Based on a hybrid superposition of an indentation contact and a rolling contact an analytical procedure is developed to evaluate the effects of surface adhesion during steady-state rolling contact, whereby two analytic solutions have been obtained. The first solution is a Hertz-type rolling contact between a rigid cylinder and a plane strain semi-infinite elastic substrate with finite adhesion, which is a JKR-type rolling contact but without singular adhesive traction at the edges of the contact zone. The second solution is of a rolling contact with JKR singular adhesive traction. The theoretical solution indicates that, when surface adhesion exists, the friction resistance can be significant provided the external normal force is small. In addition to the conventional friction coefficient, the ratio between friction resistance force and normal force, this paper suggests an “adhesion friction coefficient” which is defined as the ratio between friction resistance force and the sum of the normal force and a function of maximum adhesive traction per unit area, elastic constant of the substrate, and contact area that is characterized by the curvature of the roller surface.

1.
Hertz
,
H.
, 1882, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
170
.
2.
Greenwood
,
J. A.
, and
Williams
,
J. B.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
(
1442
), pp.
300
394
.
3.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 8.
4.
Maugis
,
D.
, 1999,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer-Verlag
,
Berlin, Germany
, Chaps. 3–4.
5.
Chen
,
Y. H.
,
Polonsky
,
I. A.
,
Chung
,
Y. W.
, and
Keer
,
L. M.
, 2002, “
Tribological Properties and Rolling-Contact-Fatigue Lives of TiN∕SiNx Multilayer Coatings
,”
Surf. Coat. Technol.
0257-8972,
154
(
2–3
), pp.
152
161
.
6.
Veprek
,
S.
,
Mukherjee
,
S.
,
Karvankova
,
P.
,
Männling
,
H. D.
,
He
,
J. L.
,
Moto
,
K.
,
Prochazka
,
J.
, and
Argon
,
A. S.
, 2003, “
Hertzian Analysis of the Self-Consistency and Reliability of the Indentation Hardness Measurements on Superhard Nanocomposite Coatings
,”
Thin Solid Films
0040-6090,
436
(
2
), pp.
220
231
.
7.
Tayebi
,
N.
, and
Polycarpou
,
A. A.
, 2005, “
Reducing the Effects of Adhesion and Friction in Microelectromechanical Systems (MEMSs) Through Surface Roughening: Comparison Between Theory and Experiments
,”
J. Appl. Phys.
0021-8979,
98
(
7
), p.
073528
.
8.
Sari
,
O. T.
,
Adams
,
G. G.
, and
Muftu
,
S.
, 2005, “
Nano-Scale Effects in the Sliding and Rolling of a Cylinder on a Substrate
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
633
640
.
9.
Shi
,
X.
, and
Polycarpou
,
A. A.
, 2005, “
An Elastic-Plastic Hybrid Adhesion Model for Contacting Rough Surfaces in the Presence of Molecularly Thin Lubricant
,”
J. Colloid Interface Sci.
0021-9797,
290
(
2
), pp.
514
525
.
10.
Burfler
,
H.
, 1959, “
Theorie der rollenden Reibung
,”
Ing.-Arch.
0020-1154,
27
, pp.
207
247
.
11.
Carter
,
F. W.
, 1926, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
1364-5021,
112
, pp.
151
157
; more detail description can be found in Chap. 12 of (33).
12.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
3rd ed.
,
P. Noordhoff
,
Groningen
, Chaps. 17–19.
13.
Achenbach
,
J. D.
,
Keer
,
L. M.
,
Khetan
,
R. P.
, and
Chen
,
S. H.
, 1979, “
Loss of Adhesion at the Tip of an Interface Crack
,”
J. Elast.
0374-3535,
9
(
4
), pp.
397
424
.
14.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
(
2
), pp.
100
104
.
15.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
(
1558
), pp.
301
342
.
16.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
M.
, 1975, “
Effect of Contact Deformations on Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
(
2
), pp.
314
326
.
17.
Hughes
,
B. D.
, and
White
,
L. R.
, 1979, “
Soft Contact Problems in Linear Elasticity
,”
Q. J. Mech. Appl. Math.
0033-5614,
32
, pp.
445
471
.
18.
Barquins
,
M.
, 1988, “
Adherence and Rolling Kinetics of a Rigid Cylinder in Contact With a Natural Rubber Surface
,”
J. Adhes.
0021-8464,
26
(
1
), pp.
1
12
.
19.
Baney
,
J. M.
, and
Hui
,
C.-Y.
, 1997, “
A Cohesive Zone Model for the Adhesion of Cylinder
,”
J. Adhes. Sci. Technol.
0169-4243,
11
, pp.
393
406
.
20.
Chen
,
S. H.
, and
Gao
,
H. J.
, 2006, “
Non-Slipping Adhesive Contact of an Elastic Cylinder on Stretched Substrates
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
(
2065
), pp.
211
228
.
21.
Spence
,
D. A.
, 1968, “
Self Similar Solutions to Adhesive Contact Problems With Incremental Loading
,”
Proc. R. Soc. London, Ser. A
1364-5021,
305
(
1480
), pp.
55
74
.
22.
Hasebe
,
N.
, and
Qian
,
J.
, 1999, “
Fundamental Solution of a Circular Rigid Punch Problem for a Half Plane
,”
Eng. Anal. Boundary Elem.
0955-7997,
23
, pp.
841
846
.
23.
Hasebe
,
N.
,
Okumura
,
M.
, and
Nakamura
,
T.
, 1989, “
Frictional Punch and Crack in Plane Elasticity
,”
J. Eng. Mech.
0733-9399,
115
, pp.
1137
1149
.
24.
Borodich
,
F. M.
, and
Keer
,
L. M.
, 2004, “
Contact Problems and Depth-Sensing Nanoindentation for Frictionless and Frictional Boundary Conditions
,”
Int. J. Solids Struct.
0020-7683,
41
(
9–10
), pp.
2479
2499
.
25.
Borodich
,
F. M.
, and
Keer
,
L. M.
, 2004, “
Evaluation of Elastic Modulus of Materials by Adhesive (No-Slip) Nano-Indentation
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
(
2042
), pp.
507
514
.
26.
Mossakovskii
,
V. I.
, 1954, “
The Fundamental Mixed Problem of the Theory of Elasticity for a Half-Space With a Circular Line Separating the Boundary Conditions
,”
J. Appl. Math. Mech.
0021-8928,
18
, pp.
187
196
.
27.
Kim
,
K. S.
,
McMeeking
,
R. M.
, and
Johnson
,
K. L.
, 1998, “
Adhesion, Slip, Cohesive Zones and Energy Fluxes for Elastic Spheres in Contact
,”
J. Mech. Phys. Solids
0022-5096,
46
(
2
), pp.
243
266
.
28.
Greenwood
,
J. A.
, and
Johnson
,
K. L.
, 1998, “
An Alternative to the Maugis Model of Adhesion Between Elastic Spheres
,”
J. Phys. D
0022-3727,
31
(
22
), pp.
3279
3290
.
29.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
, 1998, “
An Adhesion Map for the Contact of Elastic Spheres
,”
J. Colloid Interface Sci.
0021-9797,
192
(
2
), pp.
326
333
.
30.
Yao
,
H.
, and
Gao
,
H. J.
, 2006, “
Mechanics of Robust and Releasable Adhesion in Biology: Bottom-up Designed Hierarchical Structures of Gecko
,”
J. Mech. Phys. Solids
0022-5096,
54
(
6
), pp.
1120
1146
.
31.
Needleman
,
A.
, 1987, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
0021-8936,
54
(
3
), pp.
525
531
.
32.
Hao
,
S.
,
Liu
,
W. L.
,
Moran
,
B.
, and
Olson
,
G. B.
, 2003, “
A Hierarchical Multi-Physics Constitutive Model for Steels Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17–20
), pp.
1865
1908
.
33.
Barber
,
J. R.
, 2003,
Elasticity
,
2nd ed.
,
Kluwer Academic
,
Dordrecht, Netherlands
, Chap. 12.
34.
Hamaker
,
H. C.
, 1937, “
The London—Van Der Waals Attraction Between Spherical Particles
,”
Physica (Amsterdam)
0031-8914,
4
(
10
), pp.
1058
1072
.
35.
Kogut
,
L.
, and
Etsion
,
I.
, 2004, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surface
,”
ASME J. Tribol.
0742-4787,
126
, pp.
34
40
.
You do not currently have access to this content.