The impact and fatigue resistance of overlay coatings is significantly influenced by the residual strain (or stress) field induced during coating deposition, post-treatment, and in-service loading. Optimization of the residual strain field is therefore critical to the life and performance of components. Nondestructive measurement of these strain fields in relatively thin (300-400μm) thermal spray coatings, however, poses a challenge because conventional techniques, such as deep hole drilling, x-ray diffraction, synchrotron diffraction, and changes in beam curvature either make these techniques destructive and/or provides only a very near-surface strain measurement. This particularly complicates the strain analysis in cermet coatings, e.g., WC-Co deposited by the thermal spraying process, where the low penetration depth of x-ray and synchrotron-diffraction ray can only provide a through thickness measurement of stress or strain profile via the destructive layer removal technique. Recent investigations have therefore concentrated on the use of neutron diffraction technique for such analysis, and this paper reports some of the early findings of the comparison of through thickness strain measurements in relatively thin (400μm) as-sprayed and post-treated WC-12wt.%Co coatings via the neutron diffraction technique. Since neutrons are not charged, they do not interact with the electron cloud surrounding the atom (unlike x-ray); hence, diffraction results from the interaction with the atomic nucleus. Neutrons therefore have greater penetration depth in most engineering materials, and therefore provide a nondestructive through thickness strain measurement. Results of strain measurement are discussed with the structure property relationships and contact fatigue performance, and indicate that post-treatment of these coatings results in harmonization of the strain field within the coating, and at the coating substrate interface. This significantly influences the contact fatigue performance by improving both the cohesive and adhesive strength of these coatings.

1.
Daniel
,
R. L.
,
Sanders
,
H. L.
, and
Mendrek
,
M. J.
, 1994, “
Replacement of Environmentally Hazardous Corrosion Protection Paints on the Space Shuttle Main Engine Using Wire Arc Sprayed Aluminium
,”
Proc. of 7th National Thermal Spray Conference
, Boston,
ASM International
,
Materials Park, OH
, pp.
93
98
.
2.
Rhys-Jones
,
T. N.
, 1990, “
The Use of Thermally Sprayed Coatings for Compressor and Turbine Applications in Aero-Engines
,”
Surf. Coat. Technol.
0257-8972,
42
, pp.
1
11
.
3.
Chen
,
H.
, and
Hutchings
,
I. M.
, 1998, “
Abrasive Wear Resistance of Plasma-Sprayed Tungsten Carbide Cobalt Coatings
,”
Surf. Coat. Technol.
0257-8972,
107
(
2–3
), pp.
106
114
.
4.
Osawa
,
S.
,
Itsukaichi
,
T.
, and
Ahmed
,
R.
, 2005, “
Influence of Substrate Properties on the Impact Resistance of WC Cermet Coatings
,”
J. Therm. Spray Technol.
1059-9630,
14
(
4
), pp.
495
501
.
5.
Greving
,
D. J.
,
Rybicki
,
E. F.
, and
Shadley
,
J. R.
, 1994, “
Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method
,”
J. Therm. Spray Technol.
1059-9630,
3
(
4
), pp.
379
388
.
6.
Gassot
,
H.
,
Junquera
,
T.
,
Jeandin
,
V. J. M.
,
Guipont
,
V.
,
Coddet
,
C.
,
Varney
,
C.
, and
Grandsire
,
L.
, 2001, “
Comparative Study of Mechanical Properties and Residual Stress Distributions of Copper Coatings Obtained by Different Thermal Spray Processes
,”
Surf. Eng.
0267-0844,
17
(
4
), pp.
317
322
.
7.
McGrann
,
R. T. R.
,
Greving
,
D. J.
,
Shadley
,
J. R.
,
Rybicki
,
E. F.
,
Bodger
,
B. E.
, and
Somerville
,
D. A.
, 1998, “
Effect of Residual Stress in HVOF Tungsten Carbide Coatings on the Fatigue Life in Bending of Thermal Spray Coated Aluminum
,”
J. Therm. Spray Technol.
1059-9630,
7
(
4
), pp.
546
552
.
8.
Matejicek
,
J.
,
Sampath
,
S.
, and
Dubsky
,
J.
, 1998, “
X-Ray Residual Stress Measurements in Metallic and Ceramic Plasma Sprayed Coatings
,”
J. Therm. Spray Technol.
1059-9630,
7
(
4
), pp.
489
496
.
9.
Stokes
,
J.
, and
Looney
,
L.
, 2004, “
Residual Stress in HVOF Thermally Sprayed Thick Deposits
,”
Surf. Coat. Technol.
0257-8972,
177-178
, pp.
18
23
.
10.
Buchmann
,
M.
,
Gadow
,
R.
, and
Tabellion
,
J.
, 2000, “
Experimental and Numerical Residual Stress Analysis of Layer Coated Composites
,”
Mater. Sci. Eng., A
0921-5093,
288
, pp.
154
159
.
11.
Ahmed
,
R.
, and
Hadfield
,
M.
, 1997, “
Experimental Measurement of the Residual Stress Field within Thermally Sprayed Rolling Elements
,”
Wear
0043-1648,
209
, pp.
84
95
.
12.
McGrann
,
R. T. R.
,
Greving
,
D. J.
,
Shadley
,
J. R.
,
Rybicki
,
E. F.
,
Kruecke
,
T. L.
, and
Bodger
,
B. E.
, 1998, “
The Effect of Residual Stress on the Fatigue Life of Thermal Spray-Coated Steel and Aluminum
,”
Surf. Coat. Technol.
0257-8972,
108-109
, pp.
59
64
.
13.
Gill
,
S. C.
, 1993, “
Residual Stress in Plasma Sprayed Deposits
,” Ph.D. thesis, Gonville and Caius College, Cambridge University, UK.
14.
Matejicek
,
J.
, 1999, “
Processing Effects on Residual Stress and Related Properties of Thermally Sprayed Coatings
,” Ph.D. thesis, Materials Science and Engineering, State University of New York, Stony Brook.
15.
Stoica
,
V.
,
Ahmed
,
R.
,
Golshan
,
M.
, and
Tobe
,
S.
, 2004, “
Sliding Wear Evaluation of Hot Isostatically Pressed (HIPed) Thermal Spray Cermet Coatings
,”
J. Therm. Spray Technol.
1059-9630,
13
(
1
), pp.
93
107
.
16.
Kesler
,
O.
,
Matejicek
,
J.
,
Sampath
,
S.
,
Suresh
,
S.
,
Gnaeupel-Herold
,
T.
,
Brand
,
P. C.
, and
Prask
,
H. J.
, 1998, “
Measurement of Residual Stress in Plasma-Sprayed Metallic, Ceramic and Composite Coatings
,”
Mater. Sci. Eng., A
0921-5093,
257
, pp.
215
224
.
17.
Scardi
,
P.
,
Leoni
,
M.
,
Bertini
,
L.
,
Bertamini
,
L.
, and
Crenuschi
,
F.
, 1998, “
Strain Gradients in Plasma-Sprayed Zirconia Thermal Barrier Coatings
,”
Surf. Coat. Technol.
0257-8972,
108-109
, pp.
93
98
.
18.
Matejicek
,
J.
,
Sampath
,
S.
,
Brand
,
P. C.
, and
Prask
,
H. J.
, 1999, “
Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings
,”
Acta Mater.
1359-6454,
47
(
2
), pp.
607
617
.
19.
Turquier
,
F.
,
Ceretti
,
M.
,
Hairy
,
P.
,
Titeux
,
I.
, and
Lodini
,
A.
, 2000, “
Residual Stress Measurements in a Tool Steel Coated with Plasma-Sprayed Zirconia and Submitted to Thermal Fatigue in Liquid Aluminium
,”
Physica B
0921-4526,
276-278
, pp.
872
873
.
20.
Keller
,
T.
,
Margadant
,
N.
,
Pirling
,
T.
,
Escribano
,
M. J. R.
, and
Wagner
,
W.
, 2004, “
Residual Stress Determination in Thermally Sprayed Metallic Deposits by Neutron Diffraction
,”
Mater. Sci. Eng., A
0921-5093,
373
, pp.
33
44
.
21.
Sampath
,
S.
,
Jiang
,
X. Y.
,
Matejicek
,
J.
,
Prchlik
,
L.
,
Kulkarni
,
A.
, and
Viadya
,
A.
, 2004, “
Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings: An Integrated Study for Ni-5wt.%Al Bond Coats
,”
Mater. Sci. Eng., A
0921-5093,
364
, pp.
216
23
.
22.
Markocsan
,
N.
,
Nylen
,
N.
,
Fogarassy
,
P.
, and
Manescu
,
A.
, 2004, “
Residual Stress Analysis in Plasma Sprayed Free-Standing Zirconia Components
,”
Proc. of ITSC-2004
, Osaka,
ASM International
,
Materials Park, OH
, pp.
101
106
.
23.
Stewart
,
S.
,
Ahmed
,
R.
, and
Itsukaichi
,
T.
, 2004, “
Contact Fatigue Failure Evaluation of Post-Treated WC-NiCrBSi Functionally Graded Thermal Spray Coatings
,”
Wear
0043-1648,
257
, pp.
962
983
.
24.
Stewart
,
S.
, and
Ahmed
,
R.
, 2003, “
Contact Fatigue Failure Modes in Hot Isostatically Pressed WC-12%Co Coatings
,”
Surf. Coat. Technol.
0257-8972,
172
, pp.
204
216
.
25.
Stoica
,
V.
,
Ahmed
,
R.
, and
Itsukaichi
,
T.
, 2005, “
Influence of Heat Treatment on the Sliding Wear of Thermal Spray Cermet Coatings
,”
Surf. Coat. Technol.
0257-8972,
199
, pp.
7
21
.
26.
Buchmann
,
M.
,
Escribano
,
M.
,
Gadow
,
R.
, and
Burkle
,
G.
, 2002, “
On the Elastic Mechanical Properties of Thermally Sprayed Coatings
,”
Thermal Spray: Surface Engineering via Applied Research
,
C. C.
Berndt
, ed.,
ASM International
, pp.
598
605
.
27.
Allen
,
W.
,
Andreani
,
C.
,
Hutchings
,
M. T.
, and
Windsor
,
C. G.
, 1985, “
Neutron Diffraction Methods for the Study of Residual Stress Fields
,”
Adv. Phys.
0001-8732,
34
, pp.
445
473
.
28.
Daymond
,
M. R.
,
Bourke
,
M. A. M.
,
Von Dreele
,
R. B.
,
Clausen
,
B.
, and
Lorentzen
,
T.
, 1997, “
Use of Rietveld Refinement for Elastic Macrostrain Determination and for the Evaluation of Plastic Strain History From Diffraction Spectra
,”
J. Appl. Phys.
0021-8979,
82
, pp.
1554
1562
.
29.
Fitzpatrick
,
M. E.
, and
Lodini
,
A.
, 2003,
Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation
,
Taylor & Francis
, London.
30.
Hutchings
,
M. T.
,
Withers
,
P. J.
,
Holden
,
T. M.
, and
Lorentzen
,
T.
, 2005,
Introduction to the Characterization of Residual Stress by Neutron Diffraction
,
CRC Press, Taylor & Francis
, Boca Raton.
31.
Johnson
,
M. W.
,
Edwards
,
L.
, and
Withers
,
P. J.
, 1997, “
ENGIN - A New Instrument for Engineers
,”
Physica B
0921-4526,
234
, pp.
1141
1143
.
32.
Noyan
,
I. C.
, and
Cohen
,
J. B.
, 1987,
Residual Stress
,
Springer-Verlag
, Berlin.
33.
Pawley
,
G. S.
, 1981, “
Unit-Cell Refinement from Powder Diffraction Scans
,”
J. Appl. Crystallogr.
0021-8898,
14
, pp.
357
361
.
34.
Withers
,
P. J.
,
Johnson
,
M. W.
, and
Wright
,
J. S.
, 2000, “
Neutron Strain Scanning Using a Radially Collimated Diffracted Beam
,”
Physica B
0921-4526,
292
, pp.
273
285
.
35.
Lovelock
,
H.
, 1998, “
Powder/Processing/Structure Relationships in WC-Co Thermal Spray Coatings: A Review of the Published Literature
,”
J. Therm. Spray Technol.
1059-9630,
7
(
3
), pp.
357
373
.
36.
Verdon
,
C.
,
Karimi
,
A.
, and
Martin
,
J. L.
, 1998, “
A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Coatings, Part 1: Microstructures
,”
Mater. Sci. Eng., A
0921-5093,
246
, pp.
11
24
.
37.
Nerz
,
J. E.
,
Kushner
,
B. A.
, and
Rotolico
,
A. J.
, 1992, “
Microstructural Evaluation of Tungsten Carbide-Cobalt Coatings
,”
J. Therm. Spray Technol.
1059-9630,
1
(
2
), pp.
155
160
.
38.
Tobe
,
S.
,
Ando
,
Y.
,
Ahmed
,
R.
, and
Stoica
,
V.
, 2003, “
Enhancement of Wear and Mechanical Properties of Thermally Sprayed WC-Co Coatings by HIPing Post-Treatment
,”
Proc. of Tribology in Environmental Design
, Bournemouth, UK,
Professional Engineering Publishing Ltd.
,
London
, pp.
119
127
.
39.
Ito
,
H.
,
Nakamura
,
R.
,
Shiroyoma
,
M.
, and
Sasaki
,
T.
, 1990, “
Post-Treatment of Plasma Sprayed WC-Co Coatings by Hot Isostatic Pressing
,”
Proc. of 3rd National Thermal Spray Conference
, Long Beach, CA,
ASM International
,
Materials Park, OH
, pp.
233
238
.
40.
Ahmed
,
R.
, 2002, “
Rolling Contact Fatigue
,”
ASM Handbook
,
R. J.
Shipley
and
W. T.
Becker
, eds.,
ASM International
,
11
(6E), pp.
941
956
.
41.
Ahmed
,
R.
, and
Hadfield
,
M.
, 2002, “
Mechanisms of Fatigue Failure in Thermal Spray Coatings
,”
J. Therm. Spray Technol.
1059-9630,
11
(
3
), pp.
333
349
.
You do not currently have access to this content.