Contact pressure distribution throughout the contact interface has a vital role on the tribological aspects of the contact systems. Generally, contact of deformable bodies is a nonlinear problem. Viscoelastic materials have a time-dependent response, since both viscous and elastic characteristics depend on time. Such types of materials have the capability of storing and dissipating energy. When at least one of the contacting bodies is made of a viscoelastic material, contact problems become more difficult, and a nonlinear time-dependent contact problem is obtained. The objective of this paper is to develop an incremental adaptive computational model capable of handling quasistatic viscoelastic frictionless contact problems. The Wiechert model, as an effective model capable of describing both creep and relaxation phenomena, is adopted to simulate the linear behavior of viscoelastic materials. The resulting constitutive integral equations are linearized and, therefore, complications that arise during the direct integration of these equations, specially with contact problems, are avoided. In addition, the incremental convex programming method is adopted and modified to accommodate the contact problem of viscoelastic bodies. The Lagrange multiplier method is adopted to enforce the contact constraints. Two different contact problems are presented to demonstrate the efficient applicability of the proposed model.

1.
Lee
,
E. H.
, and
Rogers
,
T. G.
, 1963, “
Solution of Viscoelastic Stress Analysis Problems Using Measured Creep or Relaxation Functions
,”
ASME J. Appl. Mech.
0021-8936,
30
(
1
), pp.
127
133
.
2.
Hopkins
,
I. L.
, and
Hamming
,
R. W.
, 1957, “
On Creep and Relaxation
,”
J. Appl. Phys.
0021-8979,
28
(
8
), pp.
906
909
.
3.
Taylor
,
R. L.
, and
Chang
,
T. Y.
, 1966, “
An Approximate Method for Thermoviscoelastic Stress Analysis
,”
Nucl. Eng. Des.
0029-5493,
4
(
1
), pp.
21
28
.
4.
Taylor
,
R. L.
,
Pister
,
K. S.
, and
Goudreau
,
G. L
, 1970, “
Thermomechanical Analysis of Viscoelastic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
2
(
1
), pp.
45
59
.
5.
Zocher
,
M. A.
, 1995, “
A Thermoviscoelastic Finite Element Formulation for the Analysis of Composites
,” Ph.D. dissertation, Texas A & M University, Collage station, TX.
6.
Zocher
,
M. A.
,
Groves
,
S. E.
, and
Allen
,
D. H.
, 1997, “
A Three-Dimensional Finite Element Formulation for Thermoviscoelastic Orthotropic Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2267
2288
.
7.
Jurkiewiez
,
B.
,
Destrebecq
,
J. F.
, and
Vergne
,
A.
, 1999, “
Incremental Analysis of Time-Dependent Effects in Composite Structures
,”
Comput. Struct.
0045-7949,
73
, pp.
425
435
.
8.
Lee
,
E. H.
, and
Radok
,
R. M.
, 1960, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
0021-8936,
27
(
3
), pp.
438
444
.
9.
Yang
,
W. H.
, 1966, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
0021-8936,
33
(
2
),
395
401
.
10.
Hunter
,
S. C.
, 1960, “
The Hertz Problem for a Rigid Spherical Indenter and a Viscoelastic Half-Space
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
219
234
.
11.
Ting
,
T. C. T.
, 1966, “
The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space
,”
ASME J. Appl. Mech.
0021-8936,
33
(
4
), pp.
845
854
.
12.
Ting
,
T. C. T.
, 1968, “
Contact Problems in the Linear Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
0021-8936,
33
(
4
), pp.
248
254
.
13.
Barboteu
,
M.
,
Han
,
W.
, and
Sofonea
,
M.
, 2002, “
A Frictionless Contact Problem for Viscoelastic Materials
,”
J. Appl. Math.
1110-757X,
2
, pp.
1
21
.
14.
Fernandez
,
J. R.
,
Han
,
W.
, and
Sofonea
,
M.
, 2003, “
Numerical Simulations in the Study of Frictionless Contact Problems
,”
Int. J. Appl. Math Comput. Sci.
0867-857X,
30
, pp.
97
105
.
15.
Fernandez
,
J. R.
, and
Sofonea
,
M.
, 2004, “
Numerical Analysis of a Frictionless Viscoelastic Contact Problem With Normal Damped Response
,”
Comput. Math. Appl.
0898-1221,
47
, pp.
549
568
.
16.
Fu
,
G.
, 2004, “
A Theoretical Study of Complete Contact Indentation of Viscoelastic Materials
,”
J. Mater. Sci.
0022-2461,
39
, pp.
2877
2878
.
17.
Williams
,
M. L.
, 1964, “
Structural Analysis of Viscoelastic Materials
,”
AIAA J.
0001-1452,
2
(
5
), pp.
785
808
.
18.
Djoharian
,
P.
, 1999, “
Material Design in Physical Modeling Sound Synthesis
,”
Proc. of the 2nd Cost G-6 Workshop on Digital Audio Effect DAFx99, NTNU
,
Trondheim
, Dec. 9–11.
19.
Mahmoud
,
F. F.
,
Al-Saffar
,
A. K.
, and
El-Hadi
,
A. M.
, 1991, “
Solution of the Non-Conformal Unbonded Contact Problems by the Incremental Convex Programming Method
,”
Comput. Struct.
0045-7949,
35
(1/2), pp.
1
8
.
20.
Mahmoud
,
F. F.
,
Al-Saffar
,
A. K.
, and
Hassan
,
K. A.
, 1993, “
An Adaptive Incremental Approach for the Solution of Convex Programming Models
,”
Math. Comput. Simul.
0378-4754,
35
, pp.
501
508
.
21.
Hassan
,
M. M.
, and
Mahmoud
,
F. F.
, 2005, “
A Generalized Adaptive Incremental Approach for Solving Inequality Problems of Convex Nature
,”
Struct. Eng. Mech.
1225-4568,
18
(
4
), pp.
461
474
.
22.
Dunders
,
J.
, 1974,
Properties of Elastic Bodies in Contact
,
Univ. Press
,
Delft
.
23.
Schapery
,
R. A.
, 1974, “
Viscoelastic Behavior and Analysis of Composite Materials
,” in
Mechanics of Composite Materials
,
G. P.
Sendeckyj
, Ed.,
Academic Press
,
New York
, Vol.
2
, pp.
85
168
.
24.
Arora
,
J. S.
, 1989,
Introduction to Optimum Design
,
Mc-Graw-Hill Book Co.
,
New York
.
25.
Stupkiewicz
,
S.
, 2001, “
Extension of the Node-to-Segment Contact Element for Surface-Expansion-Dependent Contact Laws
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
739
759
.
26.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Chen
,
W. H.
,
Chang
,
C. M.
, and
Yeh
,
J. T.
, 1991, “
Finite Element Analysis of Viscoelastic Contact Problems with Friction
,”
The Fifteenth National Conference on Theoretical and Applied Mechanics
,
Tainan
,
Taiwan, R.O.C.
, pp.
713
720
.
28.
Lee
,
E. H.
, and
Radok
,
R. M.
, 1960, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
0021-8936,
27
(
3
), pp.
438
444
.
29.
Naghieh
,
G. R.
,
Jin
,
Z. M.
, and
Rahnejat
,
H.
, 1998, “
Contact Characteristics of Viscoelastic Bonded Layers
,”
Appl. Math. Model.
0307-904X,
22
, pp.
569
581
.
You do not currently have access to this content.