The performance of gas foil bearings (GFBs) relies on a coupling between a thin gas film and an elastic structure with dissipative characteristics. Because of the mechanical complexity of the structure, the evaluation of its stiffness and damping is still largely inaccurate if not arbitrary. The goal of this paper is to improve the understanding of the behavior of the bump-type FB structure under static and dynamic loads. The structure was modeled with finite elements by using a commercial code. The code employed the large displacements theory and took into account the friction between the bumps and the support and between the bumps and the deformable top foil. Static simulations enabled the estimation of the static stiffness of each bump of a strip. These simulations evidence a lack of reliable analytical models that can be easily implemented in a FB prediction code. The models found in the literature tend to overestimate the foil flexibility because most of them do not consider the interactions between bumps that seem to be highly important. The transient simulations allowed the estimation of the dynamic stiffness and the damping of a single bump of the FB structure. The presence of stick slip in the structure is evidenced, and hysteretic plots are obtained. The energy dissipation due to Coulomb friction is quantified in function of materials, excitation amplitude, and frequency. Some energetic considerations allow the calculation of the equivalent viscous damping coefficient, and the results are related to experimental data found in literature. The influence of the number of bumps is also briefly addressed.

1.
Walowit
,
J. A.
, and
Anno
,
J. N.
, 1975,
Modern Developments in Lubrication Mechanics
,
Applied Science Publishers
,
London
, Chap. 7.
2.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
647
655
.
3.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Air Bearings with Compressible Air Flow
,”
ASME J. Tribol.
0742-4787,
126
, pp.
542
546
.
4.
Iordanoff
,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
0742-4787,
121
, pp.
816
822
.
5.
Rubio
,
D.
, and
San Andrés
,
L.
, 2004, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,” ASME Turbo Expo of Vienna, Austria, ASME Paper No. GT 2004-53611.
6.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1992, “
Compliant Foil Bearing Structural Stiffness Analysis-Part 1: Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
0742-4787,
114
, pp.
394
400
7.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1994, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearings: Theoretical Considerations
,”
STLE Tribol. Trans.
1040-2004,
37
(
3
), pp.
525
533
.
8.
Peng
,
J. P.
, and
Carpino
,
M.
, 1994, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
37
(
1
), pp.
91
98
.
9.
Ku
,
C. P. R.
, and
Heshmat
,
H.
, 1993, “
Compliant Foil Bearing Structural Stiffness Analysis-Part 2: Experimental Investigation
,”
ASME J. Tribol.
0742-4787,
115
, pp.
364
369
.
10.
Ku
,
R. C. P.
, 1994, “
Dynamic Structural Properties of Compliant Foil Thrust Bearings: Comparison Between Experimental and Theoretical Results
,”
ASME J. Tribol.
0742-4787,
116
, pp.
70
75
.
11.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
, 2003, “
On the Frictional Damping Characterization of Compliant Bump Foils
,”
ASME J. Tribol.
0742-4787,
125
, pp.
804
813
.
12.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
, 2004, “
Advancements in the Structural Stiffness and Damping of a Large Compliant Foil Journal Bearing: an Experimental Study
,” ASME Turbo Expo of Vienna, Austria, ASME Paper No. GT 2004-53860.
13.
Rubio
,
D.
, and
San Andrés
,
L.
, 2005, “
Structural Stiffness, Dry-Friction Coefficient and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,” ASME Turbo Expo of Reno-Tahoe, Nevada, ASME Paper No. GT 2005-68384.
14.
Heshmat
,
H.
, and
Ku
,
R. C. P.
, 1994, “
Structural Damping of Self-Acting Compliant Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
116
, pp.
76
82
.
15.
Ku
,
R. C. P.
, and
Heshmat
,
H.
, 1994, “
Effects of Static Load on Dynamic Structural Properties in a Flexible Supported Foil Journal Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
257
262
.
16.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Kim
,
C. H.
,
Lee
,
N. S.
, and
Choi
,
D. H.
, 2004, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing (VEFB)
,”
Tribol. Int.
0301-679X,
37
, pp.
679
687
.
17.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
18.
Heshmat
,
H.
, 2000, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
0742-4787,
122
, pp.
192
198
.
19.
Howard
,
S. A.
, 1999, “
Rotordynamic and Design Methods of an Oil-Free Turbocharger
,” NASA∕CR-1999-208689.
20.
Howard
,
S. A.
,
Dellacorte
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
, 2001, “
Steady-State Stiffness of Foil Air Journal Bearings at Elevated Temperatures
,”
STLE Tribol. Trans.
1040-2004,
44
(
3
), pp.
489
493
.
21.
Swanson
,
E. E.
,
Walton
,
J. F.
, II
, and
Heshmat
,
H.
, 2002, “
A Test Stand for Dynamic Characterization of Oil-Free Bearings for Modern Gas Turbine Engines
,” ASME Turbo Expo of Amsterdam, The Netherlands, ASME Paper No. GT2002-30005.
22.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Shin
,
J. S.
, 2002, “
The Role of High Performance Foil Bearings in an Advanced, Oil-Free, Integral Permanent Magnet Motor Driven, High-Speed Turbo-Compressor Operating Above the First Bending Critical Speed
,” ASME Turbo Expo of Amsterdam, The Netherlands, ASME Paper No. GT2002-30579.
23.
Timoshenko
,
S. T.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
2nd edition
,
McGraw-Hill
,
New York
, Chap. 7
24.
Agrawal
,
G. L.
, 1998, “
Foil Air Bearings Clear to Land
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
120
, pp.
1978
1980
25.
Agrawal
,
G. L.
, 1997, “
Foil Air∕Gas Bearing Technology—An Overview
,” International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, ASME Paper No. 97-GT-347.
26.
Lee
,
D. H.
,
Kim
,
Y. C.
, and
Kim
,
K. W.
, 2005, “
The Static Performance Analysis of Air Foil Journal Bearings Considering Three-Dimensional Structure of Bump Foil
,” ASME ASME World Tribology Congress of Washington, DC, Paper No. WTC 2005-63728.
27.
Heshmat
,
C. A.
,
Xu
,
D.
, and
Heshmat
,
H.
, 2000, “
Analysis of Gas Lubricated Foil Thrust Bearings using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
0742-4787,
122
, pp.
199
204
.
28.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
,
5th ed.
,
Butterworth-Heinemann
,
Washington, DC
, Chap. 10.8.
29.
Kim
,
T. H.
, and
San Andres
,
L.
, 2005, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,” ASME Turbo Expo of Reno-Tahoe, Nevada, ASME Paper No. GT 2005-68486.
30.
Den Hartog
,
J. P.
, 1956,
Mechanical Vibrations
,
McGraw-Hill
,
New York
, pp.
373
374
31.
Lalanne
,
C.
, 1999,
Vibrations Sinusoïdales
,
Hermes Science Publications
,
Cachan, France
, pp.
223
235
32.
Abaqus, 2004, ABAQUS
Theory Manual
,
Abaqus Inc.
,
Providence, RI
, Chap. 5.
You do not currently have access to this content.