The utilization of cast aluminum alloys in automotive industry continues to rise because of consumer demand for a future generation of vehicles that will offer excellent fuel efficiency and emissions reduction, without compromising safety, performance, or comfort. Unlike wrought aluminum alloys, the cutting speed for cast aluminum alloys is considerably restricted due to the detrimental effect of the alloy’s silicon constituencies on tool life. In the present study, a new wear model is developed for tool-life management and enhancement, in a high-speed machining environment. The fracture-mechanics-based model requires normal and tangential stresses, acting on the flank of the cutting tool, as input data. Analysis of the subsurface crack propagation in the cobalt binder of cemented carbide cutting tool material is performed using a finite element (FE) model of the tool-workpiece sliding contact. The real microstructure of cemented carbide is incorporated into the FE model, and elastic-plastic properties of cobalt, defined by continuum theory of crystal plasticity are introduced. The estimation of the crack propagation rate is then used to predict the wear rate of the cutting tool. The model allows the microstructural characteristics of the cutting tool and workpiece material, as well as the tool’s loading conditions to be taken into consideration. Analysis of the results indicates that the interaction between the alloy’s hard silicon particles and the surface of the cutting tool is most detrimental to tool life. The fatigue wear of the cutting tool is shown to be directly proportional to the silicon content of the alloy, silicon grain size, and to the tool’s loading conditions.

1.
Komanduri
,
R.
,
McGee
,
J.
,
Thompson
,
R. A.
,
Covy
,
J. P.
,
Truncale
,
F. J.
,
Tipnis
,
V. A.
,
Stach
,
R. M.
, and
King
,
R. I.
, 1985, “
On a Methodology for Establishing the Machine Tool System Requirements for High-Speed∕High Throughput Machining
,”
ASME J. Eng. Ind.
0022-0817,
107
, pp.
319
324
.
2.
McGee
,
F. J.
, 1984, “
High Speed Milling of Aluminum Alloys
,”
Proc. Winter Annual Meeting of ASME
,
ASME
,
New York
, pp.
205
216
.
3.
Kramer
,
B. M.
, 1987, “
On Tool Materials for High Speed Machining
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
87
91
.
4.
Bardetsky
,
A.
,
Attia
,
M. H.
, and
Elbestawi
,
M.
, 2005, “
A Fracture Mechanics Approach to the Prediction of Tool Wear in Dry High Speed Machining of Aluminum Cast Alloys, Part 2: Model Calibration and Validation
,”
Proc. of 2005 ASME International Mechanical Engineering Congress and Exposition
,
AEME
,
Orlando, FL
, pp.
1
7
.
5.
Miller
,
J. C.
, 1981, “
Machining High Silicon Aluminum
,”
Proc. of 11th International Die Casting Congress
, Cleveland, pp.
1
9
.
6.
Larsen-Basse
,
J.
, and
Koyanagi
,
E. T.
, 1979, “
Abrasion of WC-Co Alloys by Quartz
,”
ASME J. Eng. Ind.
0022-0817,
101
, pp.
208
211
.
7.
Larsen-Basse
,
J.
, 1978, “
Abrasion Mechanism—Delamination to Machining
,”
Proc. of Int. Conf. on the Fundamentals of Tribology
,
MIT Press
,
Cambridge
, pp.
679
689
.
8.
Suh
,
N. P.
, 1973, “
The Delamination Theory of Wear
,”
Wear
0043-1648,
22
, pp.
111
124
.
9.
Blombery
,
R. I.
,
Perrot
,
C. M.
, and
Robinson
,
P. M.
, 1974, “
Abrasive Wear of Tungsten Carbide-Cobalt Composites. Wear Mechanisms
,”
Mater. Sci. Eng.
0025-5416,
13
, pp.
93
100
.
10.
Fleming
,
J. R.
, and
Suh
,
N. P.
, 1977, “
Mechanics of Crack Propagation in Delamination Wear
,”
Wear
0043-1648,
44
, pp.
39
56
.
11.
Sin
,
H. C.
, and
Suh
,
N. P.
, 1984, “
Subsurface Crack Propagation Due to Surface Traction in Sliding Wear
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
317
323
.
12.
Salahizadeh
,
H.
, and
Saka
,
N.
, 1992, “
Crack Propagation in Rolling Line Contacts
,”
ASME J. Tribol.
0742-4787,
114
, pp.
690
697
.
13.
Gall
,
K.
,
Sehitoglu
,
H.
, and
Kadioglu
,
Y.
, 1997, “
A Methodology for Predicting Variability in Microstructurally Short Fatigue Crack Growth Rates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
171
179
.
14.
Bassani
,
J. L.
, 1992, “
Plastic Flow of Crystals
,”
Adv. Appl. Mech.
0065-2156,
30
, pp.
191
254
.
15.
Huang
,
Y.
, 1991, “
A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program
,” Technical Report No. MECH-178,
Harvard University
.
16.
Quinn
,
D. F.
,
Connolly
,
P. J.
,
Howe
,
M. A.
, and
McHugh
,
P. E.
, 1997, “
Simulation of Void Growth in WC-Co Hardmetals using Crystal Plasticity Theory
,”
Int. J. Mech. Sci.
0020-7403,
39
(
2
), pp.
173
183
.
17.
Rice
,
J. R.
,
Hawk
,
D. E.
, and
Asaro
,
R. J.
, 1990, “
Crack Tip Fields in Ductile Crystals
,”
Int. J. Fatigue
0142-1123,
42
, pp.
301
321
.
18.
Bennett
,
V. P.
, and
McDowell
,
D. L.
, 2002, “
Cyclic Crystal Plasticity Analyses of Stationary, Microstructurally Small Surface Cracks in Ductile Single Phase Polycrystals
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
(
2
), pp.
677
693
.
19.
Bennett
,
V. P.
, and
McDowell
,
D. L.
, 2003, “
Crack Tip Displacements of Microstructurally Small Surface Cracks in Single Phase Ductile Polycrystals
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
185
207
.
20.
Li
,
C.
, 1989, “
Vector CTD Criterion Applied to Mixed Mode Fatigue Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
12
(
1
), pp.
59
65
.
21.
Schmauder
,
S.
,
Melander
,
A.
,
McHugh
,
P. E.
,
Rohde
,
J.
,
Honle
,
S.
,
Mintchev
,
O.
,
Thuvander
,
A.
,
Thoors
,
H.
,
Quinn
,
D.
, and
Connolly
,
P.
, 1999, “
New Tool Materials With a Structural Gradient for Milling Applications
,”
J. Phys. IV
1155-4339,
9
, pp.
147
156
.
22.
McHugh
,
P.
, and
Connolly
,
P. J.
, 2003, “
Micromechanical Modeling of Ductile Crack Growth in the Binder Phase of WC-Co
,”
Comput. Mater. Sci.
0927-0256,
27
, pp.
423
436
.
23.
Carter
,
C. W.
,
Langer
,
S. A.
, and
Fuller
,
E. R.
, 2003, “
Object-Oriented Finite Element Analysis of Real Material Microstructures
,”
The PPM2OOF Manual: Version 1.1.18
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
24.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
, 1993,
Engineering Tribology
,
Elsevier Science Publisher
,
Amsterdam
.
25.
ASM
, 1988,
Metal Handbook
9th ed.,
Metallography and Microstructures
, Vol.
9
,
American Society for Metals
,
Metals Park, OH
.
26.
Fan
,
J.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
, and
Gall
,
K.
, 2001, “
Computational Micromechanics Analysis of Cyclic Crack-Tip Behavior for Microstructurally Small Cracks in Dual-Phase Al–Si Alloys
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
1687
1706
.
27.
Elbestawi
,
M. A.
, 2002, “
High Speed Machining of Lightweight Materials for Automotive Applications (Auto-21-C7 Machinability)
,” Progress Report, MMRI,
McMaster University
, Hamilton, ON.
28.
Etheridge
,
R. A.
, and
Hsu
,
T. C.
, 1970, “
The Specific Wear Rate in Cutting Tools and Its Application to the Assessment of Machinability
,”
CIRP Ann.
0007-8506,
18
, pp.
107
117
.
29.
Allen
,
C.
,
Sheen
,
M.
,
Williams
,
J.
, and
Pugsley
,
V. A.
, 2001, “
The Wear of Ultrafine WC-Co Hard Metals
,”
Wear
0043-1648,
250
, pp.
604
610
.
You do not currently have access to this content.