Abstract

A theoretical study of thin fluid film flows between rotating and stationary disks is presented. Inertia terms are included using an averaged method. It is assumed that inertia effects do not influence the shape of velocity profiles. It is shown that this assumption applies in many cases encountered in fluid film lubrication. The model is validated by comparison with experimental data and previous theoretical studies. A thermoelastohydrodynamic analysis of a hydrostatic seal is performed. The substantial influence of inertia terms on leakage rate prediction is demonstrated.

1.
Mayer
,
E.
, 1989, “
Performance of Rotating High Duty Nuclear Seals
,”
Lubr. Eng.
0024-7154,
45
(
5
), pp.
275
286
.
2.
Koga
,
T.
, and
Fujita
,
T.
, 1986, “
The Hydrostatic Noncontact Seal Including Fluid Inertia Effect
,”
ASLE Trans.
0569-8197,
29
(
1
), pp.
35
42
.
3.
Brunetière
,
N.
,
Tournerie
,
B.
, and
Frêne
,
J.
, 2002, “
Influence of Fluid Flow Regimes on Performances of Non-Contacting Liquid Face Seals
,”
J. Tribol.
0742-4787,
124
(
3
), pp.
515
523
.
4.
Hirs
,
G. G.
, 1973, “
Bulk Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
0022-2305,
95
(
2
), pp.
137
146
.
5.
Childs
,
D. A.
, 1993,
Turbomachinery Rotordynamics—Phenomena, Modeling & Analysis
,
Wiley Interscience, John Wiley & Sons
,
New York
.
6.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
, 1982, “
Operating Characteristics of Journal Bearings in Turbulent Inertial Flow
,”
ASME J. Lubr. Technol.
0022-2305,
104
(
1
), pp.
173
179
.
7.
Soo
,
S. L.
, 1958, “
Laminar Flow Over an Enclosed Rotating Disk
,”
Trans. ASME
0097-6822,
80
(
2
), pp.
287
296
.
8.
Szeri
,
A. Z.
, and
Adams
,
M. L.
, 1978, “
Laminar Throughflow between Closely Spaced Rotating Disks
,”
J. Fluid Mech.
0022-1120,
86
(
1
), pp.
1
14
.
9.
Müller
,
H. K.
, 1969, “
Externally Pressurised Barrier Shaft Seals
,”
Proc. 4th International Conf. on Fluid Sealing
, Philadelphia, PA, May 6–9, BHRA, pp.
361
371
.
10.
Brunetière
,
N.
,
Tournerie
,
B.
, and
Frêne
,
J.
, 2003, “
TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode. Part 1: Numerical Model and Experiments
,”
ASME J. Tribol.
0742-4787,
125
(
3
), pp.
608
616
.
11.
Brunetière
,
N.
,
Tournerie
,
B.
, and
Frêne
,
J.
, 2003, “
TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode. Part 2: Parametric Study
,”
ASME J. Tribol.
0742-4787,
125
(
3
), pp.
617
627
.
12.
Brunetière
,
N.
, 2005, “
A Modified Turbulence Model for Low Reynolds Numbers: Application to Hydrostatic Seals
,”
ASME J. Tribol.
0742-4787,
127
(
1
), pp.
130
140
.
13.
Sedille
,
M.
, 1966,
Hydraulic and Thermal Turbo-Machineries- Tome I-Incompressible Fluid Mechanics
,
CNAM Collection, Masson et Cie
,
Paris, France
(in French).
14.
Bakke
,
E.
,
Kreider
,
J. F.
, and
Kreith
,
F.
, 1973, “
Turbulent Source Flow between Parallel Stationary and Co-Rotating Disks
,”
J. Fluid Mech.
0022-1120,
58
, pp.
209
231
.
15.
Tabatabai
,
M.
, and
Pollard
,
A.
, 1987, “
Turbulence in Radial Flow between Disks at Medium and Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
185
, pp.
483
502
.
16.
Brunetière
,
N.
, and
Tournerie
,
B.
, 2005, “
Finite Element Solution of the Energy Equation in Lubricated Contacts—Application to Mechanical Face Seals
,”
Rev. Eur. Eléments Finis.
,
14
(
2–3
), pp.
213
235
.
17.
Moller
,
P. S.
, 1963, “
Radial Flow without Swirl between Parallel Discs
,”
Aeronaut. Q.
0001-9259,
14
, pp.
163
184
.
18.
Singh
,
A.
,
Vyas
,
B. D.
, and
Powle
,
U. S.
, 1999, “
Investigations on Inward Flow between Two Stationary Parallel Disks
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
395
401
.
19.
Becker
,
K. M.
, 1963, “
Measurement of Convective Heat Transfer from a Horizontal Cylinder Rotating in a Tank of Water
,”
Int. J. Heat Mass Transfer
0017-9310,
6
, pp.
1053
1062
.
20.
Galenne
,
E.
, and
Pierre
,
I
, 2005, “
Thermo-Elasto-Hydro-Dynamic Modeling of Hydrostatic Seals in Reactor Coolant Pumps
,” Third World Tribology Congress,
Washington DC
, Paper No. WTC2005-63194.
You do not currently have access to this content.