The thermal surface distortion of an anisotropic elastic half-plane is studied using the extended version of Stroh’s formalism. In general, the curvature of the surface depends both on the local heat flux into the half-plane and the local temperature variation along the surface. However, if the material is orthotropic, the curvature of the surface depends only on the local heat flux into the half-plane. As a direct application, the two-dimensional thermoelastic contact problem of an indenter sliding against an orthotropic half-plane is considered. Two cases, where the indenter has either a flat or a parabolic profile, are studied in detail. Comparisons with other available results in the literature show that the present method is correct and accurate.

1.
Burton
,
R. A.
,
Kilaparti
,
S. R.
, and
Nerlikar
,
V.
, 1973, “
A Limiting Stationary Configuration With Partially Contacting Surfaces
,”
Wear
0043-1648,
24
, pp.
199
206
.
2.
Barber
,
J. R.
, 1973, “
Comments on ‘Frictionally Excited Thermoelastic Instabilities’
,”
Wear
0043-1648,
26
, pp.
425
427
.
3.
Dundurs
,
J.
, 1974, “
Distortion of a Body Caused by Free Thermal Expansion
,”
Mech. Res. Commun.
0093-6413,
1
, pp.
121
124
.
4.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
3
, pp.
625
646
.
5.
Stroh
,
A. N.
, 1962, “
Steady-State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
0022-2488,
41
, pp.
77
103
.
6.
Clements
,
D. L.
, 1973, “
Thermal Stress in an Anisotropic Elastic Half-Space
,”
SIAM J. Appl. Math.
0036-1399,
24
, pp.
332
337
.
7.
Wu
,
C. H.
, 1984, “
Plane Anisotropic Thermoelasticity
,”
ASME Trans. J. Appl. Mech.
0021-8936,
51
, pp.
724
726
.
8.
Hwu
,
C.
, 1990, “
Thermal Stresses in an Anisotropic Plate Distributed by an Insulated Elliptic Hole or Crack
,”
ASME Trans. J. Appl. Mech.
0021-8936,
57
, pp.
916
922
.
9.
Golberg
,
M. A.
, 1990,
Numerical Solution of Integral Equations
,
Plenum Press
, New York.
10.
Erdogan
,
F.
, and
Gupta
,
G. D.
, 1972, “
On the Numerical Solution of Singular Integral Equations
,”
Q. Appl. Math.
0033-569X,
27
, pp.
525
534
.
11.
Nowacki
,
W.
, 1962,
Thermoelasticity
,
Addison Wesley
, Reading, MA.
12.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
0031-899X
37
, pp.
405
426
.
13.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford Science Publication
, New York.
14.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1973, “
Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function and Surface Waves in Anisotropic Elastic Solids
,”
Phys. Norv.
0031-8930,
7
, pp.
13
19
.
15.
Ting
,
T. C. T.
, 1986, “
Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,”
Int. J. Solids Struct.
0020-7683,
22
, pp.
965
983
.
16.
Dongye
,
C.
, and
Ting
,
T. C. T.
, 1989, “
Explicit Expressions of Barnett-Lothe Tensors and Their Associated Tensors for Orthotropic Materials
,”
Q. Appl. Math.
0033-569X,
47
, pp.
723
734
.
17.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
18.
Barber
,
J. R.
, 1976, “
Some Thermoelastic Contact Problems Involving Frictional Heating
,”
Q. J. Mech. Appl. Math.
0033-5614,
29
, pp.
2
13
.
19.
Hwu
,
C.
, and
Fan
,
C. W.
, 1998, “
Sliding Punches With or Without Friction Along The Surface of An Anisotropic Elastic Half-Plane
,”
Q. J. Mech. Appl. Math.
0033-5614,
51
, pp.
159
177
.
You do not currently have access to this content.