The mechanical spacing between the slider and the disk has to be reduced to less than 5 nm in order to achieve an areal density of . Certain physical phenomena, such as those that can be caused by intermolecular and surface forces, which do not have a significant effect at higher flying heights, become more important at such low head-media separations. These forces are attractive for head-media separation as low as 0.5 nm, which causes a reduction in the mechanical spacing as compared to what would be the case without them. Single degree of freedom models have been used in the past to model these forces, and these models have predicted unstable flying in the sub-5-nm flying height range. Changes in the pitch and the roll angles were not accounted for in such models. A 3-DOF air bearing dynamic simulator model is used in this study to investigate the effect of the intermolecular forces on the static and dynamic performance of the air bearing sliders. It is seen that the intermolecular forces increase the level of flying height modulations at low flying heights, which in turn results in dynamic instability of the system similar to what has also been observed in experiments. The effect of initial vertical, pitch, and roll excitations on the static and dynamic flying characteristics of the slider in the presence of the intermolecular forces has also been investigated. A stiffness matrix is defined to characterize the stability in the vertical, pitch, and roll directions. The fly height diagrams are used to examine the multiple equilibriums that exist for low flying heights. Finally, a study was carried out to compare the performance of pico and femto designs based on the hysteresis observed during the touchdown-takeoff simulations.
Skip Nav Destination
e-mail: vineet@cml.me.berkeley.edu
e-mail: dbogy@cml.me.berkeley.edu
Article navigation
January 2006
Research Papers
Effect of Intermolecular Forces on the Static and Dynamic Performance of Air Bearing Sliders: Part I—Effect of Initial Excitations and Slider Form Factor on the Stability
Vineet Gupta,
Vineet Gupta
Graduate Student
Department of Mechanical Engineering,
e-mail: vineet@cml.me.berkeley.edu
University of California
, Berkeley, Berkeley, CA 94720
Search for other works by this author on:
David B. Bogy
David B. Bogy
William S. Floyd, Jr., Distinguished Professor in Engineering
Department of Mechanical Engineering,
e-mail: dbogy@cml.me.berkeley.edu
University of California
, Berkeley, Berkeley, CA 94720
Search for other works by this author on:
Vineet Gupta
Graduate Student
Department of Mechanical Engineering,
University of California
, Berkeley, Berkeley, CA 94720e-mail: vineet@cml.me.berkeley.edu
David B. Bogy
William S. Floyd, Jr., Distinguished Professor in Engineering
Department of Mechanical Engineering,
University of California
, Berkeley, Berkeley, CA 94720e-mail: dbogy@cml.me.berkeley.edu
J. Tribol. Jan 2006, 128(1): 197-202 (6 pages)
Published Online: May 5, 2005
Article history
Received:
February 24, 2004
Revised:
May 5, 2005
Connected Content
Citation
Gupta, V., and Bogy, D. B. (May 5, 2005). "Effect of Intermolecular Forces on the Static and Dynamic Performance of Air Bearing Sliders: Part I—Effect of Initial Excitations and Slider Form Factor on the Stability." ASME. J. Tribol. January 2006; 128(1): 197–202. https://doi.org/10.1115/1.2000269
Download citation file:
Get Email Alerts
Related Articles
Effect of the Intermolecular Forces on the Flying Attitude of Sub-5 NM Flying Height Air Bearing Sliders in Hard Disk Drives
J. Tribol (July,2002)
Effect of Intermolecular Forces on the Static and Dynamic Performance of Air Bearing Sliders: Part II—Dependence of the Stability on Hamaker Constant, Suspension Preload and Pitch Angle
J. Tribol (January,2006)
Experimental and Numerical Investigation of Dynamic Instability in the Head Disk Interface at Proximity
J. Tribol (July,2005)
Effect of Intermolecular Forces on the Dynamic Response of a Slider
J. Tribol (January,2007)
Related Proceedings Papers
Related Chapters
Numerical Simulation of the Air Bearing Film in the Head-Disk Interface of Hard Disk Drives by Using Meshless Locall Petrov-Galerkin Method
International Conference on Mechanical and Electrical Technology 2009 (ICMET 2009)
Stability and Range
Design and Analysis of Centrifugal Compressors
Nonlinear Analysis of a Tapered Disk Thermal Fatigue Specimen
Thermal Fatigue of Materials and Components