Abstract

A probabilistic analysis is presented for studying the variation effects on the main bearing performance of an I.C. engine system, under structural dynamic conditions. For computational efficiency, the probabilistic analysis is based on surrogate models (metamodels), which are developed using the kriging method. An optimum symmetric Latin hypercube algorithm is used for efficient “space-filling” sampling of the design space. The metamodels provide an efficient and accurate substitute to the actual engine bearing simulation models. The bearing performance is based on a comprehensive engine system dynamic analysis which couples the flexible crankshaft and block dynamics with a detailed main bearing elastohydrodynamic analysis. The clearance of all main bearings and the oil viscosity comprise the random variables in the probabilistic analysis. The maximum oil pressure and the percentage of time within each cycle that a bearing operates with oil film thickness below a threshold value of 0.27μm at each main bearing constitute the system performance measures. Probabilistic analyses are first performed to calculate the mean, standard deviation and probability density function of the bearing performance measures. Subsequently, a probabilistic sensitivity analysis is described for identifying the important random variables. Finally, a reliability-based design optimization study is conducted for optimizing the main bearing performance under uncertainty. Results from a V6 engine are presented.

1.
Cressie
,
N.
, 1988, “
Spatial Prediction and Ordinary Kriging
,”
Math. Geol.
0882-8121,
20
(
4
), pp.
405
421
.
2.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
3.
Reddy
,
M. V.
,
Granhdi
,
R. V.
, and
Hopkins
,
D. A.
, 1994, “
Reliability Based Structural Optimization: A Simplified Safety Index Approach
,”
Comput. Struct.
0045-7949,
53
(
6
), pp.
1407
1418
.
4.
Lee
,
J. O.
,
Yang
,
Y. O.
, and
Ruy
,
W. S.
, 2002, “
A Comparative Study on Reliability Index and Target Performance Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
0045-7949,
80
, pp.
257
269
.
5.
Tu
,
J.
, 1999, “
Design Potential Concept for Reliability-Based Design Optimization
,” Ph.D. Thesis, The University of Iowa.
6.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
,
557
-
564
, 1999.
7.
Ebrat
,
O.
,
Mourelatos
,
Z. P.
,
Hu
,
K.
,
Vlahopoulos
,
N.
, and
Vaidyanathan
,
K.
, 2004, “
An Elastohydrodynamic Coupling of a Rotating Crankshaft and a Flexible Engine Block
,”
J. Tribol.
0742-4787,
126
, pp.
1
9
.
8.
Ebrat
,
O.
,
Mourelatos
,
Z. P.
,
Vlahopoulos
,
N.
, and
Vaidyanathan
,
K.
, 2004, “
Calculation of Journal Bearing Dynamic Characteristics Including Journal Misalignment and Bearing Structural Deformation
,”
Tribol. Trans.
1040-2004,
47
, pp.
1
9
.
9.
Hu
,
K.
,
Mourelatos
,
Z. P.
, and
Vlahopoulos
,
N.
, 2002, “
A Finite Element Formulation for Coupling Rigid and Flexible Body Dynamics of Rotating Beams
,”
J. Sound Vib.
0022-460X,
253
(
3
), pp.
603
630
.
10.
Craven
,
P.
, and
Wahba
,
G.
, 1978, “
Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree of Smoothing by the Methods of Generating Cross-Validation
,”
Numer. Math.
0029-599X,
31
, pp.
377
403
.
11.
Cheng
,
B.
, and
Titterington
,
D. M.
, 1994, “
Neural Networks: A Review from a Statistical Perspective
,”
Stat. Sci.
0883-4237,
9
(
1
), pp.
2
54
.
12.
Ellacott
,
S. W.
,
Mason
,
J. C.
, and
Anderson
,
I. J.
, 1997,
Mathematics of Neural Networks: Models, Algorithms, and Applications
,
Kluver Academic Publishers
, Boston, MA.
13.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
, 1986, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
(
2
), pp.
639
659
.
14.
Jansen
,
M.
,
Maifait
,
M.
, and
Bultheel
,
A.
, 1996, “
Generalized Cross Validation for Wavelet Thresholding
,”
Signal Process.
0165-1684,
56
, pp.
33
44
.
15.
Stein
,
M.
, 1987, “
Large Sample Properties of Simulation Using Latin Hypercube Sampling
,”
Technometrics
0040-1706,
29
, pp.
143
151
.
16.
Shewy
,
M.
, and
Wynn
,
H.
, 1987, “
Maximum Entropy Design
,”
Appl. Stat.
0285-0370,
14
(
2
), pp.
165
170
.
17.
Johnson
,
J.
,
Moore
,
L.
and
Ylvisaker
,
D.
, 1990, “
Minimum and Maximum Distance Designs
,”
J. Stat. Plan. Infer.
0378-3758,
2
, pp.
131
148
.
18.
Park
,
J.-S.
, 1994, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
39
, pp.
95
111
.
19.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
, 2000, “
Algorithm Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
0378-3758,
90
, pp.
145
159
.
20.
Helton
,
J. C.
, 1993, “
Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal
,”
Reliability Eng. Sys. Safety
0951-8320,
42
,
327
367
.
21.
Mohanty
,
S.
, and
Wu
,
Y.-T.
, 2001, “
CDF Sensitivity Analysis Technique for Ranking Influential Parameters in the Performance Assessment of the Proposed High-Level Waste Repository at Yucca Mountain, Nevada, USA
,”
Reliability Eng. Sys. Safety
, 0951-8320
73
, pp.
167
176
.
22.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
23.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,”
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
.
24.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings of ASME Design Engineering Technical Conferences (DETC)
.
25.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
, 1968, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
0001-1452,
6
(
7
), pp.
1313
1319
.
26.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
, Wiley, New York.
27.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2001, “
Design Potential Method for Robust System Parameter Design
,”
AIAA J.
0001-1452,
39
(
4
), pp.
667
677
.
28.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
29.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design; Modeling and Computation
, 2nd ed.,
Cambridge University Press
, Cambridge.
You do not currently have access to this content.