In tribological contact, frictional heating may lead to temperature rise, which in turn may result in thermal displacement of the contacting bodies. The quantification of these effects is desirable in order to more accurately predict wear and failure of contacting surfaces. The change in temperature at a contact area may be attributed to the combined effects of frictional heating and convective cooling. This paper presents a transient, three-dimensional solution for the normal surface displacement of an elastic half-space due to an arbitrarily distributed, moving heat source and surface convection.
Issue Section:
Research Papers
Keywords:
thermoelasticity,
friction,
thermal expansion,
mechanical contact,
convection,
cooling,
wear,
failure (mechanical)
Topics:
Convection,
Cooling,
Displacement,
Heat,
Heating,
Thermoelasticity,
Transients (Dynamics),
Temperature
1.
Liu
, S. B.
, and Wang
, Q.
, 2001, “A Three Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,” J. Tribol.
0742-4787, 123
, pp. 17
–26
.2.
Liu
, S. B.
, Rodgers
, R. J.
, Wang
, Q.
, and Keer
, L. M.
, 2001, “A Fast and Effective Method for Transient Thermoelastic Displacement Analysis
,” J. Tribol.
0742-4787, 123
, pp. 479
–485
.3.
Johnson
, K. L.
, 1996, Contact Mechanics
, Cambridge University
, Cambridge.4.
Barber
, J. R.
, 1971, “The Solution of Heated Punch Problems by Point Source Methods
,” Int. J. Eng. Sci.
0020-7225, 9
, pp. 1165
–1169
.5.
Gladwell
, G. M. L.
, and Barber
, J. M.
, 1983, “Thermoelastic Contact Problems with Radiation Boundary Conditions
,” Q. J. Mech. Appl. Math.
0033-5614, 36
, pp. 403
–417
.6.
Ling
, F. F.
, and Mow
, V. C.
, 1965, “Surface Displacement of a Convective Elastic Half-Space Under an Arbitrarily Distributed Fast-Moving Heat Source
,” J. Basic Eng.
0021-9223, 87
, pp. 729
–734
.7.
Barber
, J. R.
, 1972, “Distortion of the Semi-Infinite Solid Due to Transient Surface Heating
,” Int. J. Mech. Sci.
0020-7403, 14
, pp. 377
–393
.8.
Barber
, J. R.
, 1982, “Green’s Functions for Transient Thermoelastic Contact Problems for the Half-Plane
,” Wear
0043-1648, 79
, pp. 11
–19
.9.
Barber
, J. R.
, 1984, “Thermoelastic Displacements and Stresses Due to a Heat Source Moving Over the Surface of a Half Plane
,” J. Appl. Mech.
0021-8936, 51
, pp. 636
–640
.10.
Byrant
, M. D.
, 1988, “Thermoelastic Solutions for Thermal Distributions Moving Over Half Space Surfaces and Application to the Moving Heat Source
,” J. Appl. Mech.
0021-8936, 55
, pp. 87
–92
.11.
Brock
, L. M.
, Georgiadis
, H. G.
, and Tsamasphyros
, G.
, 1997, “The Coupled Thermoelasticity Problem of the Transient Motion of a Line Heat/Mechanical Source Over a Half Space
,” J. Therm. Stresses
0149-5739, 20
, pp. 773
–795
.12.
Lee
, S. L.
, and Ou
, C. R.
, 2001, “Gap Formation and Interfacial Heat Transfer Between Thermoelastic Bodies in Imperfect Contact
,” J. Heat Transfer
0022-1481, 123
, pp. 205
–212
.13.
Brock
, L. M.
, and Rodgers
, M. J.
, 1997, “Steady-State Response of a Thermoelastic Half-Space to the Rapid Motion of Surface Thermal/Mechanical Loads
,” J. Elast.
0374-3535, 47
, pp. 225
–240
.14.
Lykotrafitis
, G.
, and Georgiadis
, H. G.
, 2003, “The Three-Dimensional Steady-State Thermo-Elastodynamic Problem of Moving Sources Over a Half-Plane
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 899
–940
.15.
Kulchytsky-Zhyhailo
, R. D.
, and Yevtushenko
, A. A.
, 1997, “Thermoelastic Contact Problems with Frictional Heating and Convective Cooling
,” Int. J. Eng. Sci.
0020-7225, 35
, pp. 211
–219
.16.
DesRuisseaux
, N. R.
, and Zerkle
, R. D.
, 1970, “Temperature in Semi-Infinite and Cylindrical Bodies Subjected to Moving Heat Sources and Surface Cooling
,” J. Heat Transfer
0022-1481, 92
, pp. 456
–464
.17.
Fischer
, F. D.
, Werner
, E.
, and Knothe
, K.
, 2001, “The Surface Temperature of a Halfplane Heated by Friction and Cooled by Convection
,” ZAMM
, 81
, pp. 75
–81
.18.
Liu
, S. B.
, Lannou
, S.
, Wang
, Q.
, and Keer
, L. M.
, 2004, “Solutions for Temperature Rise in Stationary/Moving Bodies Caused by Surface Heating with Surface Convection
,” ASME J. Heat Transfer
0022-1481, 126
, pp. 776
–785
.19.
Mura
, T.
, 1998, Micromechanics of Defects in Solids
, Kluwer
, Dordrecht.20.
Campbell
, G. A.
, and Foster
, R. M.
, 1931, Fourier Integrals for Practical Applications
, Bell Telephone Laboratories
, New York.21.
Morrison
, N.
, 1994, Introduction to Fourier Analysis
, Wiley
, New York.22.
Liu
, S. B.
, Wang
, Q.
, and Liu
, G.
, 2000, “A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,” Wear
0043-1648, 243
, pp. 101
–110
.23.
Jayamaha
, S. E. G.
, Wijeysundera
, N. E.
, and Chou
, S. K.
, 1996, “Measurement of the Heat Transfer Coefficient for Walls
,” Build. Environ.
0360-1323, 31
, pp. 399
–407
.24.
Sozbir
, N.
, Chang
, Y. W.
, and Yao
, S. C.
, 2003, “Heat Transfer of Impacting Water Mist on High Temperature Metal Surfaces
,” ASME J. Heat Transfer
0022-1481, 125
, pp. 70
–74
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.