A mathematical programming solution based on finite element method is used to analyze wall slip of viscoplastic lubrication in a metal-rolling inlet zone. Slip velocity can be directly obtained by parametric quadratic programming without an iterative process between the oil film pressure and the slip velocity. It is found that wall slip causes the oil film thickness to decrease dramatically. The initial limiting shear strength and proportional constant of the viscoplastic lubricant have a larger effect on the oil film pressure than the rolling speed. The nonsensitivity of oil film thickness to the rolling speed is a great particular advantage to metal-rolling processing.
Issue Section:
Research Papers
1.
Wilson
, W. R. D.
, and Aggarwal
, B. B.
, 1978, “A Plastohydrodynamic Inlet Zone Analysis for a Viscoplastic Lubrication
,” Wear
0043-1648, 7
, pp. 119
–132
.2.
Wilson
, W. R. D.
, and Huang
, X. B.
, 1989, “Viscoplastic Behavior of a Silicone Oil in a Metalforming Inlet Zone
,” ASME J. Tribol.
0742-4787, 111
, pp. 585
–590
.3.
Wilson
, W. R. D.
, 1997, “Tribology in Cold Metal Forming
,” ASME J. Manuf. Sci. Eng.
1087-1357, 119
, pp. 695
–698
.4.
Hatzikiriakos
, S. G.
, and Dealy
, J. M.
, 1991, “Wall Slip of Molten High Density Polyethylene I—Sliding Plate Rheometer Studies
,” J. Rheol.
0148-6055, 35
, pp. 497
–523
.5.
Pit
, R.
, Hervet
, H.
, and Leger
, L.
, 1999, “Friction and Slip of a Simple Liquid at a Solid Surface
,” Tribol. Lett.
1023-8883, 7
, pp. 147
–152
.6.
Kaneta
, N.
, et al., 1990, “Observation of Wall Slip in Elastophydrodynamic Lubrication
,” ASME J. Tribol.
0742-4787, 112
, pp. 447
–584
.7.
Ehret
, P.
, Dowson
, D.
, and Taylor
, C. N.
, 1999, “Transient EHL Solutions with Interfacial Slip
,” ASME J. Tribol.
0742-4787, 121
, pp. 703
–710
.8.
Jacobson
, B. O.
, and Hamrock
, B. J.
, 1984, “Non-Newtonian Fluid Model Incorporated Into Elastohydrodynamic Lubrication of Rectangular Contacts
,” ASME J. Lubr. Technol.
0022-2305, 106
, pp. 275
–282
.9.
Bair
, S.
, and Winer
, W. O.
, 1979, “Shear Strength Measurements of Lubricants at High Pressure
,” ASME J. Lubr. Technol.
0022-2305, 101
, pp. 251
–256
.10.
Bair
, S.
, and Winer
, W. O.
, 1990, “The Shear Stress Rheology of Liquid Lubricants at Pressure of 2to200MPa
,” ASME J. Tribol.
0742-4787, 112
, pp. 246
–252
.11.
Strozzi
, A.
, 1975, “Formation of Three Lubrication Problems in Terms of Complementarity
,” Wear
0043-1648, 104
, pp. 103
–119
.12.
Wu
, C. W.
, et al., 1992, “Parametric Variational Principle for Viscoplastic Lubrication Model
,” ASME J. Tribol.
0742-4787, 113
, pp. 731
–735
.13.
Zhong
, W. X.
, and Wu
, C. W.
, 1992, “Elastic-Plastic Contacts Using Parametric Quadratic Programming
,” Numerical Methods in Contact Problems
, M. H.
Aliabadi
and C. A.
Brebbia
, eds., Computational Mechanics Publication and Elsevier Applied Science
, Chap. 9, pp. 305
–356
.14.
Huebner
, K. H.
, 1975, The Finite Element Method for Engineers
, Wiley
, New York.15.
Murch
, L. E.
, and Wilson
, W. R. D.
, 1975, “A Thermal Elastohydrodynamic Inlet Zone Analysis
,” ASME J. Lubr. Technol.
0022-2305, 97
, pp. 212
–216
.16.
Wilson
, W. R. D.
, and Murch
, L. E.
, 1976, “A Refined Model for the Hydrodynamic Lubrication of Strip Rolling
,” ASME J. Lubr. Technol.
0022-2305, 98
, pp. 426
–432
.17.
Christensen
, H.
, 1969, “Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,” Proc. Inst. Mech. Eng.
0020-3483, 184
(1
), pp. 1013
–1025
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.