An elastic-plastic contact (EPC) solution and code is developed using a modified semi-analytical method. The indentation tests with different hardening behavior are simulated by using the developed EPC code. The distributions of contact pressure, residual stress and plastic strain are obtained and compared with the results of the finite element method models without hardening. Some techniques, such as fast Fourier transform and fast convergence method, are used to increase the computation speed.
1.
Greenwood
, J. A.
, and Williamson
, J. B. P.
, 1966, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser. A
1364-5021, 295
, pp. 300
–319
.2.
Tsukizoe
, T.
, and Hisakado
, T.
, 1965, “On Mechanism of Contact between Metal Surfaces—Penetrating Depth and Average Clearance
,” J. Basic Eng.
0021-9223, 87
(3
), pp. 666
–674
.3.
Tsukizoe
, T.
, and Hisakado
, T.
, 1968, “On Mechanism of Contact between Metal Surfaces. 2. Real Area and Number of Contact Points
,” Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501, 90
(1
), p. 73
.4.
Onions
, R. A.
, and Archard
, J. F.
, 1973, “Contact of Surfaces Having a Random Structure
,” J. Phys. D
0022-3727, 6
(3
), pp. 289
–304
.5.
Mikic
, B. B.
, and Roca
, R. T.
, 1974, “Solution to Contact of 2 Rough Spherical Surfaces
,” J. Appl. Mech.
0021-8936, 41
(3
), pp. 801
–803
.6.
Bush
, A. W.
, Gibson
, R. D.
, and Thomas
, T. R.
, 1975, “Elastic Contact of a Rough Surface
,” Wear
0043-1648, 35
(1
), pp. 87
–111
.7.
Bush
, A. W.
, Gibson
, R. D.
, and Keogh
, G. P.
, 1976, “Limit of Elastic Deformation in Contact of Rough Surfaces
,” Mech. Res. Commun.
0093-6413, 3
(3
), pp. 169
–174
.8.
Bush
, A. W.
, Gibson
, R. D.
, and Keogh
, G. P.
, 1977, “Strongly Anisotropic Rough Surfaces
,” ASME J. Lubr. Technol.
0022-2305, 101
, pp. 15
–20
.9.
Suratkar
, P. T.
, Pandit
, S. M.
, and Wu
, S. M.
, 1976, “A Stochastic Approach to the Mode of Deformation and Contact Between Rough Surfaces
,” Wear
0043-1648, 39
, pp. 239
–250
.10.
Zhao
, Y. W.
, Maietta
, D. M.
, and Chang
, L.
, 2000, “An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,” J. Tribol.
0742-4787, 122
(1
), pp. 86
–93
.11.
Liu
, Z. Q.
, Neville
, A.
, and Reuben
, R. L.
, 2000, “An Analytical Solution for Elastic and Elastic-Plastic Contact Models
,” Tribol. Trans.
1040-2004, 43
(4
), pp. 627
–634
.12.
Chang
, W. R.
, Etsion
, I.
, and Bogy
, D. B.
, 1987, “An Elastic-Plastic Model for the Contact of Rough Surfaces
,” J. Tribol.
0742-4787, 109
(2
), pp. 257
–263
.13.
Gupta
, V.
, Hahn
, G. T.
, Bastias
, P. C.
, and Rubin
, C. A.
, 1995, “Contribution of Surface Irregularities to Rolling Contact Plasticity in Bearing Steels
,” ASME J. Tribol.
0742-4787, 117
, pp. 660
–666
.14.
Liu
, G.
, et al., 2001, “Elasto-Plastic Contact of Rough Surfaces
,” Tribol. Trans.
1040-2004, 44
(3
), pp. 437
–443
.15.
Kogut
, L.
, and Etsion
, I.
, 2002, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,” J. Clim.
0894-8755, 69
(5
), pp. 657
–662
.16.
Mesarovic
, S. D.
, and Fleck
, N. A.
, 1999, “Spherical Indentation of Elastic-Plastic Solids
,” Proc. R. Soc. London, Ser. A
1364-5021, 455
(1987
), pp. 2707
–2728
.17.
Komvopoulos
, K.
, and Choi
, D. H.
, 1992, “Elastic Finite-Element Analysis of Multiasperity Contacts
,” J. Tribol.
0742-4787, 114
(4
), pp. 823
–831
.18.
Love
, A. E. H.
, 1952, A Treatise on the Mathematical Theory of Elasticity
, Cambridge University Press
, Cambridge.19.
Poon
, C. Y.
, and Sayles
, R. S.
, 1994, “Numerical Contact Model of a Smooth Ball on an Anisotropic Rough-Surface
,” J. Tribol.
0742-4787, 116
(2
), pp. 194
–201
.20.
Lubrecht
, A. A. a. L. E.
, 1991, “A Fast Solution of the Dry Contact Problem and the Associated Subsurface Stress Field, Using Multilevel Techniques
,” J. Tribol.
0742-4787, 113
, pp. 128
–132
.21.
Polonsky
, I. A.
, and Keer
, L. M.
, 1999, “A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,” Wear
0043-1648, 231
(2
), pp. 206
–219
.22.
Ju
, Y.
, and Farris
, T. N.
, 1996, “Spectral Analysis of Two-Dimensional Contact Problems
,” J. Tribol.
0742-4787, 118
, pp. 320
–328
.23.
Polonsky
, I. A.
, and Keer
, L. M.
, 2000, “A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,” J. Tribol.
0742-4787, 122
(1
), pp. 30
–35
.24.
Liu
, S. B.
, Wang
, Q.
, and Liu
, G.
, 2000, “A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,” Wear
0043-1648, 243
(1–2
), pp. 101
–111
.25.
Nogi
, T.
, and Kato
, T.
, 1997, “Influence of a Hard Surface Layer on the Limit of Elastic Contact. 1. Analysis Using a Real Surface Model
,” J. Tribol.
0742-4787, 119
(3
), pp. 493
–500
.26.
Stanley
, H. M.
, and Kato
, T.
, 1997, “An FFT-Based Method for Rough Surface Contact
,” J. Tribol.
0742-4787, 119
(3
), pp. 481
–485
.27.
Jacq
, C.
, et al., 2002, “Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,” J. Tribol.
0742-4787, 124
(4
), pp. 653
–667
.28.
Mayeur
, C.
, Sainsot
, P.
, and Flamand
, L.
, 1995, “A Numerical Elastoplastic Model for Rough Contact
,” ASME J. Tribol.
0742-4787, 117
, pp. 422
–429
.29.
Boussinesq
, J.
, 1885, Application des Potentials a l’Etude de l’Equilibre et du Mouvement des Solids Elastique
, Gauthier-Villars
, Paris.30.
Cerruti
, V.
, 1882, Roma, Acc. Lincei
, Mem. fis. mat.31.
Liu
, G.
, Wang
, Q. J.
, and Lin
, C.
, 1999, “A Survey Of Current Models for Simulating the Contact Between Rough Surfaces
,” Tribol. Trans.
1040-2004, 42
(3
), pp. 581
–591
.32.
Johnson
, K. L.
, 1985, Contact Mechanics
, Cambridge University Press
, Cambridge.33.
McCormic
, G. P.
, 1983, Nonlinear Programming: Theory, Algorithms, and Applications
, Wiley
, New York.34.
Minoux
, M.
, 1986, Mathematical Programming: Theory and Algorithms
, Wiley-Interscience series in discrete mathematics and optimization
, Wiley
, Chichester.35.
Pshenichny
, B. N. a. Y. M. D.
, 1975, Numerical Methods in Optimization Problem
, Nauka
, Moscow.36.
Kalker
, J. J.
, 1986, “Numerical Calculation of the Elastic Field in a Half-Space
,” Comm. Appl. Numer. Methods
, 2
, pp. 401
–410
.37.
Stoer
, J. a. R. B.
, 1980, Introduction to Numerical Analysis
, Springer
, New York.38.
Liu
, S. B.
, and Wang
, Q.
, 2002, “Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,” J. Tribol.
0742-4787, 124
(1
), pp. 36
–45
.39.
Brebbia
, L. C.
, 1980, “The Boundary Element Method for Engineers
,” Pentech
, London.40.
Chiu
, Y. P.
, 1977, “Stress-Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space
,” J. Appl. Mech.
0021-8936, 44
(4
), pp. 587
–590
.41.
Chiu
, Y. P.
, 1978, “Stress-Field and Surface Deformation in a Half Space with a Cuboidal Zone in Which Initial Strains Are Uniform
,” J. Appl. Mech.
0021-8936, 452
(2
), pp. 302
–306
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.