This work presents a finite element model (FEM) of the residual stresses and strains that are formed after an elastoplastic hemispherical contact is unloaded. The material is modeled as elastic perfectly plastic and follows the von Mises yield criterion. The FEM produces contours for the normalized axial and radial displacements as functions of the removed interference depth and location on the surface of the hemisphere. Contour plots of the von Mises stress and other stress components are also presented to show the formation of the residual stress distribution with increasing plastic deformation. This work shows that high residual von Mises stresses appear in the material pileup near the edge of the contact area after complete unloading. Values are defined for the minimum normalized interference, that when removed, results in plastic residual stresses. This work also defines an interference at which the maximum residual stress transitions from a location below the contact region and along the axis of symmetry to one near to the surface at the edge of the contact radius (within the pileup).

1.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
2.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
),
657
662
.
3.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
,
2000
, “
Frictionless Indentation of Dissimilar Elastic-Plastic Spheres
,”
Int. J. Solids Struct.
,
37
,
7071
7091
.
4.
Johnson, K. L., 1968, “An Experimental Determination of the Contact Stresses Between Plastically Deformed Cylinders and Spheres,” Engineering Plasticity, Cambridge University Press, Cambridge, pp. 341–361.
5.
Tabor, D., 1951, The Hardness of Materials, Clarendon, Oxford, pp. 14–15.
6.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1993
, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
,
60
,
829
841
.
7.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1995
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results
,”
ASME J. Appl. Mech.
,
62
,
20
28
.
8.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1995
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results
,”
ASME J. Appl. Mech.
,
62
,
29
42
.
9.
Ye
,
N.
, and
Komvopoulos
,
K.
,
2003
, “
Effect of Residual Stress in Surface Layer on Contact Deformation of Elastic-Plastic Layered Media
,”
ASME J. Tribol.
,
125
,
692
699
.
10.
Quicksall
,
J.
,
Jackson
,
R. L.
, and
Green
,
I.
,
2004
, “
Elasto-Plastic Hemispherical Contact for Varying Mechanical Properties
,”
IMechE J. of Eng. Trib.-Part J
,
218
(
4
), pp.
313
322
.
11.
Shigley, J. E., and Mischke, C. R., 1989, Mechanical Engineering Design, 5th ed., McGraw-Hill, New York.
12.
Fischer-Cripps
,
A. C.
,
1999
, “
The Hertzian Contact Surface
,”
J. Mater. Sci.
,
34
,
129
137
.
13.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
Adhesion in Elastic-Plastic Spherical Microcontact
,”
J. Colloid Interface Sci.
,
261
,
372
378
.
14.
Muller
,
V. M.
,
Derjaguin
,
Y. P.
, and
Toporov
,
Yu. J.
,
1983
, “
On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to a Rigid Plane
,”
Colloids Surf.
,
7
,
251
259
.
15.
Goodier, J. N., and Hodge, P. G., 1958, Elasticity and Plasticity, Wiley, New York.
16.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge.
17.
Dowling, N. E., 1993, Mechanical Behavior of Materials, Prentice-Hall, Englewood Cliffs, NJ.
You do not currently have access to this content.