A contact mechanics theory of static friction is presented for isotropic rough surfaces exhibiting fractal behavior. The analysis is based on a piecewise power-law size distribution and a normal slope distribution of the asperity contacts and elastic–fully plastic deformation models. Numerical integration yields solutions for the normal and friction forces in terms of fractal parameters, elastic–plastic material properties, and interfacial shear strength. The variation of the static coefficient of friction with normal load is related to the effect of the surface topography on the dominant deformation mode at the asperity contacts. Plastic deformation of the smaller asperity contacts dominates at low loads and elastic deformation of the larger asperity contacts dominates at high loads. The critical load signifying the transition from predominantly plastic to elastic deformation depends on the fractal parameters and material properties. In the low-load range, the static coefficient of friction decreases with the increase of the load, while in the high-load range it increases with the load. Numerical results for copper fractal surfaces illustrate the effects of normal load, surface topography, and interfacial shear strength on the static coefficient of friction.

1.
Webster
,
M. N.
, and
Sayles
,
R. S.
,
1986
, “
A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces
,”
ASME J. Tribol.
,
108
, pp.
314
320
.
2.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic–Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
, pp.
3617
3624
.
3.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
4.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
J. Appl. Mech.
,
34
, pp.
153
159
.
5.
Hisakado
,
T.
,
1974
, “
Effect of Surface Roughness on Contact Between Solid Surfaces
,”
Wear
,
28
, pp.
217
234
.
6.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic–Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
7.
Roy Chowdhury
,
S. K.
, and
Ghosh
,
P.
,
1994
, “
Adhesion and Adhesional Friction at the Contact Between Solids
,”
Wear
,
174
, pp.
9
19
.
8.
Mandelbrot
,
B. B.
,
1967
, “
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
,
156
, pp.
636
638
.
9.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
10.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
, pp.
205
216
.
11.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1991
, “
Fractal Network Model for Contact Conductance
,”
ASME J. Heat Transfer
,
113
, pp.
516
525
.
12.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic–Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
13.
Bhushan
,
B.
, and
Majumdar
,
A.
,
1992
, “
Elastic–Plastic Contact Model for Bifractal Surfaces
,”
Wear
,
153
, pp.
53
64
.
14.
Sahoo
,
P.
, and
Roy Chowdhury
,
S. K.
,
1996
, “
A Fractal Analysis of Adhesion at the Contact Between Rough Solids
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
210
, pp.
269
279
.
15.
Sahoo
,
P.
, and
Roy Chowdhury
,
S. K.
,
2000
, “
A Fractal Analysis of Adhesive Friction Between Rough Solids in Gentle Sliding
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
214
, pp.
583
595
.
16.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1998
, “
Three-Dimensional Elastic–Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems
,”
ASME J. Tribol.
,
120
, pp.
808
813
.
17.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2001
, “
Three-Dimensional Contact Analysis of Elastic–Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
,
123
, pp.
632
640
.
18.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass–Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
,
370
, pp.
459
484
.
19.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
ASME J. Tribol.
,
119
, pp.
391
400
.
20.
Mandelbrot
,
B. B.
,
1975
, “
Stochastic Models for the Earth’s Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands
,”
Proc. Natl. Acad. Sci. U.S.A.
,
72
, pp.
3825
3828
.
21.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York, pp. 1–83 and 116–118.
22.
Johnson
,
K. L.
,
1997
, “
Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
163
179
.
23.
Komvopoulos
,
K.
,
1991
, “
Sliding Friction Mechanisms of Boundary-Lubricated Layered Surfaces: Part II.—Theoretical Analysis
,”
Tribol. Trans.
,
34
, pp.
281
291
.
24.
Kaye, G. W. C., and Laby, T. H., 1986, Tables of Physical and Chemical Constants and Some Mathematical Functions, Longman, London, UK.
You do not currently have access to this content.