This manuscript describes a formulaic method to predict the severity of crossing motions experienced by ultra-high-molecular-weight polyethylene (UHMWPE) under sliding conditions across a bearing surface. A statistical model for evaluating the distribution of sliding about this orientation is described. This model compares favorably to published experimental data on UHMWPE under multidirectional pin-on-disk testing. These algorithms are applied to the tibial component of a total knee replacement using patient-specific kinematics for gait and stair-rise activities collected using fluoroscopy. A dynamic contact model is used to calculate contact pressures and slip velocities on individual surface elements from this kinematic data. The most significant degree of crossing motion intensity was observed in the lateral compartments for both gait and stair-rise activities. This coincided with the location of maximum tribological intensity. The maximum crossing motions are characteristic of 4 and 9 deg of bidirectional crossing motion for gait and stair, respectively.

1.
Bragdon
,
C. R.
,
O’Conner
,
D. O.
,
Lowenstein
,
J. D.
,
Jasty
,
M.
, and
Syniuta
,
W. D.
,
1996
, “
The Importance of Multidirectional Motion on the Wear of Polyethylene
,”
IMechE Part H: Journal of Engineering in Medicine
,
210
, pp.
157
165
.
2.
Muratoglu
,
O. K.
,
Bragdon
,
C. R.
,
O’Connor
,
D. O.
,
Jasty
,
M.
,
Harris
,
W. H.
,
Gul
,
R.
, and
McGarry
,
F.
,
1999
, “
Unified Wear Model for Highly Crosslinked Ultra-High Molecular Weight Polyethylenes (Uhmwpe)
,”
Biomaterials
,
20
, pp.
1463
1470
.
3.
Burroughs
,
B. R.
, and
Blanchet
,
T. A.
,
2001
, “
Factors Affecting the Wear of Irradiated Uhmwpe
,”
Tribol. Trans.
,
44
, pp.
215
223
.
4.
Wang
,
A.
,
2001
, “
A Unified Theory of Wear for Ultra-High Molecular Weight Polyethylene in Multi-Directional Sliding
,”
Wear
,
248
, pp.
38
47
.
5.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
,
1996
, “
3-Dimensional Sliding/Contact Computational Simulation of Total Hip Wear
,”
Clin. Orthop. Relat. Res.
, pp.
41
50
.
6.
Kurtz
,
S. M.
,
Ochoa
,
J. A.
,
Hovey
,
C. B.
, and
White
,
C. V.
,
1999
, “
Simulation of Initial Frontside and Backside Wear Rates in a Modular Acetabular Component With Multiple Screw Holes
,”
J. Biomech.
,
32
, pp.
967
976
.
7.
Meyer
,
D. M.
, and
Tichy
,
J. A.
,
1999
, “
Lubrication Model of an Artificial Hip Joint: Pressure Profile Versus Inclination Angle of the Acetabular Cup
,”
ASME J. Tribol.
,
121
, pp.
492
498
.
8.
Turrell
,
M.
,
Wang
,
A.
, and
Bellare
,
A.
,
2003
, “
Quantification of the Effect of Cross-Path Motion on the Wear Rate of Ultra-High Molecular Weight Polyethylene
,”
Wear
, pp.
1034
1039
.
9.
Harman
,
M. K.
,
Banks
,
S. A.
, and
Hodge
,
W. A.
,
2001
, “
Polyethylene Damage and Knee Kinematics After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, pp.
383
393
.
10.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
, pp.
638
649
.
11.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
,
1997
, “
The Mechanics of Knee Replacements During Gait: In Vivo Fluoroscopic Analysis of Two Designs
,”
Am. J. Knee Surgery
,
10
, pp.
261
267
.
12.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
,
1997
, “
In Vivo Kinematics of Cruciate-Retaining and Substituting Knee Arthroplasties
,”
J. Arthroplasty
,
12
, pp.
297
304
.
13.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
,
2004
, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
,
38
, pp.
305
314
.
14.
Giddings
,
V. L.
,
Kurtz
,
S. M.
, and
Edidin
,
A. A.
,
2001
, “
Total Knee Replacement Polyethylene Stresses During Loading in a Knee Simulator
,”
ASME J. Tribol.
,
123
, pp.
842
847
.
15.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
,
2002
, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
,
35
, pp.
267
275
.
16.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
17.
An
,
K. N.
,
Himeno
,
S.
,
Tsumura
,
H.
,
Kawai
,
T.
, and
Chao
,
E. Y. S.
,
1990
, “
Pressure Distribution on Articular Surfaces—Application to Joint Stability Evaluation
,”
J. Biomech.
,
23
, pp.
1013
1020
.
18.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a 3-Dimensional Model of the Knee
,”
J. Biomech.
,
24
, pp.
1019
1031
.
19.
Li
,
G. A.
,
Sakamoto
,
M.
, and
Chao
,
E. Y. S.
,
1997
, “
A Comparison of Different Methods in Predicting Static Pressure Distribution in Articulating Joints
,”
J. Biomech.
,
30
, pp.
635
638
.
20.
Fregly
,
B. J.
,
Bei
,
Y. H.
, and
Sylvester
,
M. E.
,
2003
, “
Experimental Evaluation of an Elastic Foundation Model to Predict Contact Pressures in Knee Replacements
,”
J. Biomech.
,
36
, pp.
1659
1668
.
21.
Kane, T. R., and Levinson, D. A., 1985, Dynamics: Theory and Applications, McGraw Hill, New York.
22.
Johnson
,
F.
,
Scarrow
,
P.
, and
Waugh
,
W.
,
1981
, “
Assessments of Loads in the Knee-Joint
,”
Med. Biol. Eng. Comput.
,
19
, pp.
237
243
.
23.
Schipplein
,
O. D.
, and
Andriacchi
,
T. P.
,
1991
, “
Interaction Between Active and Passive Knee Stabilizers During Levelwalking
,”
J. Orthop. Res.
,
9
, pp.
113
119
.
24.
Hurwitz
,
D. E.
,
Sumner
,
D. R.
,
Andriacchi
,
T. P.
, and
Sugar
,
D. A.
,
1998
, “
Dynamic Knee Loads During Gait Predict Proximal Tibial Bone Distribution
,”
J. Biomech.
,
31
, pp.
423
430
.
25.
Lu
,
T. W.
,
Taylor
,
S. J. G.
,
O’Connor
,
J. J.
, and
Walker
,
P. S.
,
1997
, “
Influence of Muscle Activity on the Forces in the Femur: An in Vivo Study
,”
J. Biomech.
,
30
, pp.
1101
1106
.
26.
Taylor
,
S. J. G.
,
Walker
,
P. S.
,
Perry
,
J. S.
,
Cannon
,
S. R.
, and
Woledge
,
R.
,
1998
, “
The Forces in the Distal Femur and the Knee During Walking and Other Activities Measured by Telemetry
,”
J. Arthroplasty
,
13
, pp.
428
437
.
27.
Taylor
,
S. J. G.
, and
Walker
,
P. S.
,
2001
, “
Forces and Moments Telemetered From Two Distal Femoral Replacements During Various Activities
,”
J. Biomech.
,
34
, pp.
839
848
.
You do not currently have access to this content.