In this paper an algorithm is developed where Reynolds’ equation, equilibrium equations and non-negativity of pressure are formulated as a system of equations, which are not differentiable in the usual sense. This system is then solved using Pang’s Newton method for B-differentiable equations.
Issue Section:
Technical Notes
1.
Alart
, P.
, and Curnier
, A.
, 1991
, “A Mixed Formulation for Frictional Contact Problems Prone to Newton Like Solution Methods
,” Comput. Methods Appl. Mech. Eng.
, 92
, pp. 353
–375
.2.
Christensen
, P. W.
, Klarbring
, A.
, Pang
, J. S.
, and Stro¨mberg
, N.
, 1998
, “Formulation and Comparison of Algorithms for Frictional Contact Problems
,” Int. J. Numer. Methods Eng.
, 42
, pp. 145
–173
.3.
Johansson
, L.
, and Klarbring
, A.
, 2000
, “Study of Frictional Impact Using a Non-Smooth Equations Solver
,” ASME J. Appl. Mech.
, 67
, pp. 267
–273
.4.
Pang
, J. S.
, 1990
, “Newton’s Method for B-Differentiable Equations
,” Math. Op. Res.
, 15
, pp. 311
–341
.5.
Elrod
, H. G.
, 1981
, “A Cavitation Algorithm
,” ASME J. Lubr. Technol.
, 103
, pp. 350
–354
.6.
Vijayaraghavan
, D.
, and Keith
, T. G.
, 1989
, “Development and Evaluation of a Cavitation Algorithm
,” Tribol. Trans.
, 32
, pp. 225
–233
.7.
Kostreva
, M.
, 1984
, “Elasto-Hydrodynamic Lubrication: A Non-Linear Complementarity Problem
,” Int. J. Numer. Methods Fluids
, 4
, pp. 377
–397
.8.
Oh
, K. P.
, 1984
, “The Numerical Solution of Dynamically Loaded Elastohydrodynamic Contact as a Nonlinear Complementarity Problem
,” ASME J. Tribol.
, 106
, pp. 88
–95
.9.
Dahlquist, G., Bjo¨rk, A˚., and Anderson, N., 1974, Numerical Methods, Prentice-Hall, Englewood Cliffs.
10.
Khonsari, M. M., and Booser, R. E., 2001, Applied Tribology, Wiley, New York.
Copyright © 2004
by ASME
You do not currently have access to this content.