A method for solving the two-dimensional (2-D) isothermal rough surface contact problem of general anisotropic materials with friction is presented. By using Stroh’s formalism, the surface displacements of an elastic half-space due to uniform distributions of traction over a strip are derived from the surface Green’s function. The surface displacement and subsurface stresses of the anisotropic half-space due to the distributed contact pressure may then be calculated by superposition. The real contact area and the contact pressure are determined via an iteration scheme using the conjugate gradient method.
Issue Section:
Technical Papers
1.
Liu
, G.
, Wang
, Q.
, and Lin
, C.
, 1999
, “A Survey of Current Models for Simulating the Contact Between Rough Surfaces
,” Tribol. Trans.
, 42
, pp. 581
–591
.2.
Polonsky
, I. A.
, and Keer
, L. M.
, 1999
, “A Numerical Method for Solving Rough Contact Problems Based on the Multi-level Multi-Summation and Conjugate Gradient Techniques
,” Wear
, 231
, pp. 206
–219
.3.
Liu
, G.
, Wang
, Q.
, and Liu
, S.
, 2001
, “A Three-Dimensional Thermal-Mechanical Asperity Contact Model for Two Nominally Flat Surfaces in Contact
,” ASME J. Tribol.
, 123
, pp. 595
–602
.4.
Stroh
, A. N.
, 1958
, “Dislocations and Cracks in Anisotropic Elasticity
,” Philos. Mag.
, 3
, pp. 625
–646
.5.
Stroh
, A. N.
, 1962
, “Steady-State Problems in Anisotropic Elasticity
,” J. Math. Phys.
, 41
, pp. 77
–103
.6.
Fan
, H.
, and Keer
, L. M.
, 1994
, “Two-Dimensional Contact on an Anisotropic Elastic Half-Space
,” ASME J. Appl. Mech.
, 61
, pp. 250
–255
.7.
Fan
, C. W.
, and Hwu
, C.
, 1996
, “Punch Problems for an Anisotropic Elastic Half-plane
,” ASME J. Appl. Mech.
, 63
, pp. 69
–76
.8.
Hwu
, C.
, and Fan
, C. W.
, 1998
, “Sliding Punches With or Without Friction Along The Surface of An Anisotropic Elastic Half-Plane
,” Q. J. Mech. Appl. Math.
, 51
, pp. 159
–177
.9.
Hwu
, C.
, and Fan
, C. W.
, 1998
, “Contact Problems of Two Dissimilar Anisotropic Elastic Bodies
,” ASME J. Appl. Mech.
, 65
, pp. 580
–587
.10.
Daniel, I. M., and Ishai, O., 1994, Engineering Mechanics of Composite Materials, Oxford University Press, New York.
11.
Dongye
, C.
, and Ting
, T. C. T.
, 1989
, “Explicit Expressions of Barnett-Lothe Tensors and Their Associated Tensors for Orthotropic Materials
,” Q. Appl. Math.
, 47
, pp. 723
–734
.12.
Hwu
, C.
, 1993
, “Fracture Parameters for the Orthotropic Bimaterial Interface Cracks
,” Eng. Fract. Mech.
, 45
, pp. 89
–97
.13.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K.
14.
Hamilton
, G. M.
, and Goodman
, L. E.
, 1966
, “The Stress Field Created by a Circular Sliding Contact
,” ASME J. Appl. Mech.
, 33
, pp. 371
–376
.15.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford Science Publication, New York.
16.
Barnett
, D. M.
, and Lothe
, J.
, 1973
, “Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function and Surface Waves in Anisotropic Elastic Solids
,” Phys. Norv.
, 7
, pp. 13
–19
.Copyright © 2004
by ASME
You do not currently have access to this content.