So far in the literature, the distribution of stationary temperature over the surface of a half space subjected to a moving circular heat source has been reported in an integral or asymptotic form. In this paper, an exact explicit analytical solution is provided, which allows the determination of the temperatures over the contact area with a very short computational time, regardless of the value of the Peclet number. The solution is based on special functions (Bessel and hypergeometric functions) that are pre-programmed under a formal calculation software (e.g., Maple). The results of the proposed solution are in agreement with the asymptotic models available in the literature.

1.
Boussinesq
,
J.
,
1890
, “
Calcul des Tempe´ratures Successives d’un Milieu Homoge`ne et Atherme Inde´fini que Sillone une Source de Chaleur
,”
C.R.
,
110
, pp.
1242
1244
.
2.
Rosenthal
,
D.
,
1935
, “
Etude The´orique du Re´gime Thermique Pendant la Soudure a` l’Arc
,”
C.R.
,
2
, pp.
1277
1292
.
3.
Blok
,
H.
,
1937
, “
Les Tempe´ratures de Surface dans des Conditions de Graissage Sous Extre^me Pression
,”
Proc. Sd. World Petrol. Cong.
,
3
, pp.
471
486
.
4.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature of Sliding Contacts
,”
Proc. R. Soc. NSW
76
, pp.
203
224
.
5.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
6.
Archard
,
J. F.
,
1958
–1959, “
The Temperature of Rubbing Surfaces
,”
Wear
,
2
, pp.
438
455
.
7.
Holm
,
R.
,
1952
, “
Temperature Development in a Heated Contact With Application to Sliding Contacts
,”
J. Appl. Mech.
,
19
, pp.
369
374
.
8.
Francis
,
H. A.
,
1970
, “
Interfacial Temperature Distribution Within a Sliding Hertzian Contact
,”
ASLE Trans.
,
14
, pp.
41
54
.
9.
Gecim
,
B.
, and
Winer
,
W. O.
,
1985
, “
Transient Temperature in the Vicinity of an Asperity Contact
,”
ASME J. Tribol.
,
107
, pp.
333
342
.
10.
Tian
,
X.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
, pp.
167
174
.
11.
Gradshteyn, I. S., and Ryzhik, I. M., 1965, Table of Integrals Series and Products, Academic Press, New York and London.
12.
Abramowitz, M., and Stegun, I. A., 1972, Handbook of Mathematical Functions, Dover Publication, Inc., New York.
13.
Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I, 1990, Integrals and Series, Gordon and Breach Science Publishers.
You do not currently have access to this content.