In this paper, an isothermal study of the shut down process of elastohydrodynamic lubrication under a constant load is performed. The surface mean velocity is decreased linearly from the initial steady state value to zero. The details of the pressure and film thickness distributions in the contact area are discussed for the two stages of shut down process, namely the deceleration stage and the subsequent pure squeeze motion stage with zero entraining velocity. The nature of the balance between the pressure, the wedge and the squeeze terms in Reynolds equation enables an analytical prediction of the film thickness change on the symmetry line of the contact in the deceleration period, provided that the steady state central film thickness relationship with velocity is known. The results indicate that for a fixed deceleration rate, if the initial steady state surface mean velocity is large enough, the transient pressure and film thickness distributions in the deceleration period solely depend on the transient velocity. The pressure and film thickness at the end of the deceleration period are then the same and do not depend on the initial steady state velocity. From the same initial steady state velocity, larger deceleration rates provide higher central pressure increase, but also preserve a higher film thickness in the contact area at the end of the deceleration period. Later in the second stage when the axisymmetric pressure and film thickness patterns typical of pure squeeze motion form, the pressure distribution in the contact area resembles a Hertzian contact pressure profile with a higher maximum Hertzian pressure and a smaller Hertzian half contact width. As a result, the film thickness is close to a parabolic distribution in the contact area. The volume of the lubricant trapped in the contact area is then estimated using this parabolic film thickness profile.

1.
Gohar
,
R.
, and
Cameron
,
A.
,
1963
, “
Optical Measurement of Oil Film Thickness Under EHD Lubrication
,”
Nature (London)
,
200
, pp.
458
459
.
2.
Koye
,
K. A.
, and
Winer
,
W. O.
,
1981
, “
An Experimental Evaluation of the Hamrock and Dowson Minimum Film Thickness Equation for Fully Flooded EHD Point Contacts
,”
ASME J. Lubr. Technol.
,
103
, pp.
284
294
.
3.
Smeeth
,
M.
, and
Spikes
,
H. A.
,
1997
, “
Central and Minimum Elastohydrodynamic Film Thickness at High Contact Pressure
,”
ASME J. Tribol.
,
119
, pp.
291
296
.
4.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2001
, “
Elastohydrodynamic Film Collapse During Rapid Deceleration. Part I: Experimental Results
,”
ASME J. Tribol.
,
123
, pp.
254
261
.
5.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contact: Part I—Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
, pp.
223
229
.
6.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contact: Part II—Ellipticity Parameter Results
,”
ASME J. Lubr. Technol.
,
98
, pp.
375
383
.
7.
Lubrecht, A. A., 1987, “Numerical Solution of the EHL Line and Point Contact Problem Using Mulligrid Techniques,” Ph.D. thesis, University of Twente, Enschede, The Netherlands, ISBN 90-9001583-3.
8.
Venner, C. H., 1991, “Multilevel Solution of the EHL Line and Point Contact Problems,” Ph.D. thesis, “University of Twente, Enschede, The Netherlands, ISBN 90-9003974-0.
9.
Venner
,
C. H.
,
1994
, “
Higher-Order Multilevel Solvers for the EHL Line and Point Contact Problem
,”
ASME J. Tribol.
,
116
, pp.
741
750
.
10.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
, pp.
348
370
.
11.
Stanley
,
H. M.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
,
119
, pp.
481
485
.
12.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1994
, “
Numerical Simulation of a Transverse Ridge in a Circular EHL Contact Under Rolling/Sliding
,”
ASME J. Tribol.
,
116
, pp.
751
761
.
13.
Kaneta
,
M.
,
Sakai
,
T.
, and
Nishikawa
,
H.
,
1992
, “
Optical Interferometric Observations of the Effects of a Bump on Point Contact EHL
,”
ASME J. Tribol.
,
114
, pp.
779
784
.
14.
Kim
,
K.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Elastohydrodynamic Lubrication of Point Contact
,”
ASME J. Tribol.
,
113
, pp.
703
711
.
15.
Kim
,
K.
, and
Sadeghi
,
F.
,
1993
, “
Three-Dimensional Temperature Distribution in EHD Lubrication: Part II—Point Contact and Numerical Formulation
,”
ASME J. Tribol.
,
115
, pp.
36
45
.
16.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model with Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
, pp.
67
74
.
17.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part II—Surface Temperature Rise Model and Results
,”
ASME J. Tribol.
,
123
, pp.
75
82
.
18.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2001
, “
Elastohydrodynamic Film Formation at the Start-Up of the Motion
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
215
, pp.
125
138
.
19.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2000
, “
The Influence of Lubricant Upon EHD Film Behavior During Sudden Halting of Motion
,”
Tribol. Trans.
,
43
, pp.
731
739
.
20.
Sugimura
,
J.
,
Jones
, Jr.,
W. R.
, and
Spikes
,
H. A.
,
1998
, “
EHD Film Thickness in Non-Steady State Contacts
,”
ASME J. Tribol.
,
120
, pp.
442
452
.
21.
Christensen
,
H.
,
1970
, “
Elastohydrodynamic Theory of Spherical Bodies in Normal Approach
,”
ASME J. Lubr. Technol.
,
92
, pp.
145
154
.
22.
Dowson
,
D.
, and
Wang
,
D.
,
1994
, “
An Analysis of the Normal Bouncing of a Solid Elastic Ball on an Oily Plate
,”
Wear
,
179
, pp.
29
37
.
23.
Larsson
,
R.
, and
Ho¨glund
,
E.
,
1995
, “
Numerical Simulation of a Ball Imparcting and Rebounding a Lubricated Surface
,”
ASME J. Tribol.
,
117
, pp.
94
102
.
24.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2001
, “
Elastohydrodynamic Film Collapse During Rapid Deceleration: Part II—Theoretical Analysis and Comparison of Theory and Experiment
,”
ASME J. Tribol.
,
123
, pp.
262
267
.
25.
Greenwood
,
J. A.
, and
Morales-Espejel
,
G. E.
,
1994
, “
The Behaviour of Transverse Roughness in EHL Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
208
, pp.
121
132
.
26.
Strauss, W. A., 1992, Partial Differential Equations: An Introduction, John Wiley & Sons, New York.
You do not currently have access to this content.