A numerical simulation is performed to investigate the development of forces between a rigid sphere and an elastic half-space during normal, dynamic contact in the absence of friction. Of interest is to quantify the magnitude of forces that arise and to identify any sources of hysteresis between approach and separation, the latter being associated with energy dissipation. In the simulation a rigid sphere approaches and separates from an isotropic, linearly elastic half-space at a prescribed, constant speed. Surface forces are incorporated in the model by ascribing a surface interaction potential derived from the Lennard-Jones 6-12 intermolecular potential. Dynamical equations of motion for the interface are integrated numerically during the approach-separation event. During the approach phase, it is found that the magnitude of adhesive force is generally consistent with well-known static-equilibrium based analytical models (e.g., DMT and JKR), depending upon the strength of the interaction potential. However, during separation, the attractive force computed in this dynamic simulation may be several times higher than the predictions of the analytical models. Additionally, the maximum compressive forces attained during the contact process far exceed the predictions of Hertzian contact theory. The discrepancy between results of this simulation and those of the static-equilibrium analytical and numerical models indicate that dynamic interactions play a significant role in determining the development of contact forces. Moreover, dynamic effects persist even when the approach-separation speed of the sphere is small compared to the dilatation and shear wave speeds of the half-space.

1.
Timoshenko, S., and Goodier, S. N., 1951, Theory of Elasticity, 3rd edition, McGraw-Hill, New York.
2.
Thornton
,
C.
, and
Zemin
,
N.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behavior of Adhesive Elastic-Plastic Spheres
,”
Powder Technol.
,
99
, pp.
154
162
.
3.
Komvopoulos
,
K.
,
1996
, “
Surface Engineering and Microtribology for Micromechanical Systems
,”
Wear
,
200
, pp.
305
327
.
4.
Bowden, F. P., and Tabor, D., 1950, Friction and Lubrication of Solids, Oxford, London.
5.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
, pp.
981
988
.
6.
Dahneke
,
B.
,
1971
, “
The Capture of Aerosol Particles by Surfaces
,”
J. Colloid Interface Sci.
,
37
(
2
), pp.
342
353
.
7.
Dahneke
,
B.
,
1973
, “
Measurements of Bouncing of Small Latex Spheres
,”
J. Colloid Interface Sci.
,
45
(
3
), pp.
584
589
.
8.
Tsai
,
C.-J.
,
Pui
,
D. Y. H.
, and
Liu
,
B. Y. H.
,
1990
, “
Capture and Rebound of Small Particles Upon Impact with Solid Surfaces
,”
Aerosol. Sci. Technol.
,
12
, pp.
497
507
.
9.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
A324
, pp.
301
313
.
10.
Xu
,
M.
, and
Willeke
,
K.
,
1993
, “
Right-Angle Impaction and Rebound of Particles
,”
J. Aerosol Sci.
,
24
(
1
), pp.
19
30
.
11.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol. Sci. Technol.
,
16
, pp.
51
64
.
12.
Li
,
X.
,
Dunn
,
P. F.
, and
Brach
,
R. M.
,
1998
, “
Experimental and Numerical Studies on the Normal Impact of Microspheres with Surfaces
,”
J. Aerosol Sci.
,
30
(
4
), pp.
439
449
.
13.
Brach
,
R. M.
,
Dunn
,
P. F.
, and
Cheng
,
W.
,
1999
, “
Rotational Dissipation During Microsphere Impact
,”
J. Aerosol Sci.
,
30
(
10
), pp.
1321
1329
.
14.
Johnson
,
K. L.
, and
Pollock
,
H. M.
,
1994
, “
The Role of Adhesion in the Impact of Elastic Spheres
,”
J. Adhes. Sci. Technol.
,
8
(
11
), pp.
1323
1332
.
15.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
16.
Chang
,
W. R.
, and
Ling
,
F. F.
,
1992
, “
Normal Impact Model of Rough Surfaces
,”
ASME J. Tribol.
,
114
(
3
), pp.
439
447
.
17.
Muller
,
V. M.
,
Yushchenko
,
V. S.
, and
Derjaguin
,
B. V.
,
1980
, “
On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane
,”
J. Colloid Interface Sci.
,
77
(
1
), pp.
91
101
.
18.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
, pp.
2
13
.
19.
Greenwood
,
D.
,
1997
, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. London, Ser. A
,
A453
, pp.
1277
1297
.
20.
Feng
,
J. Q.
,
2001
, “
Adhesive Contact of Elastically Deformable Spheres: A Computational Study of Pull-Off Force and Contact Radius
,”
J. Colloid Interface Sci.
,
238
, pp.
318
323
.
21.
Rogers
,
L. N.
, and
Reed
,
J.
,
1984
, “
The Adhesion of Particles Undergoing and Elastic-Plastic Impact with a Surface
,”
J. Phys. D
,
17
(
4
), pp.
677
689
.
22.
Wall
,
S.
,
John
,
W.
,
Wang
,
H.-C.
, and
Goren
,
S.
,
1990
, “
Measurements of Kinetic Energy Loss for Particles Impacting Surfaces
,”
Aerosol. Sci. Technol.
,
12
, pp.
926
946
.
23.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behavior of Adhesive Elastic-Plastic Spheres
,”
Powder Technol.
,
99
, pp.
154
162
.
24.
Quesnel
,
D. J.
,
Rimai
,
D. S.
, and
Demejo
,
L. P.
,
1995
, “
Molecular Dynamic Modeling of Interfacial Energy
,”
J. Adhes. Sci. Technol.
,
9
(
8
), pp.
1015
1030
.
25.
Quesnel
,
D. J.
,
Rimai
,
D. S.
, and
Demejo
,
L. P.
,
1995
, “
Molecular Dynamic Modeling of Particle Adhesion
,”
J. Adhes.
,
51
(
1–4
), pp.
49
49
.
26.
Rimai
,
D. S.
,
Quesnel
,
D. J.
, and
Busnaina
,
A. A.
,
2000
, “
The Adhesion of Dry Particles in the Nanometer to Micrometer-size Range
,”
Colloids and Surfaces, A: Physicochemical and Engineering Aspects
,
165
, pp.
3
10
.
27.
Atkins, P. W., 1990, Physical Chemistry, W. H. Freeman & Co., New York.
28.
Muller
,
V. M.
,
Derjaguin
,
B. V.
, and
Toporov
,
Y. P.
,
1983
, “
On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to A Rigid Plane
,”
Colloids and Surfaces
,
7
, pp.
251
259
.
29.
Isrealachvili, J., 1992, Intermolecular and Surface Forces, Academic Press, London.
30.
Graff, K. F., 1975, Wave Motion in Elastic Solids, Ohio State University Press, Columbus, OH.
31.
Gear, C. W., 1971, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, NJ.
32.
Johnson, K., 1985, Contact Mechanics, Cambridge University Press, New York.
33.
Maugis
,
D.
,
1991
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
50
(
1
), pp.
243
269
.
34.
Pashley
,
M. D.
,
1984
, “
Further Consideration of the DMT Model for Elastic Contact
,”
Colloids and Surfaces
,
12
, pp.
69
77
.
You do not currently have access to this content.