Present understanding of the mechanisms of lubrication and the load carrying capacity of lubricant films mainly relies on models in which the Reynolds equation is used to describe the flow. The narrow gap assumption is a key element in its derivation from the Navier Stokes equations. However, the tendency in applications is that lubricated contacts have to operate at smaller film thickness levels, and because engineering surfaces are never perfectly smooth, locally in the film this narrow gap assumption may violated. In addition to this geometric limitation of the validity of the Reynolds equation may come a piezoviscous and compressibility related limitation. In this paper the accuracy of the predictions of the Reynolds model in relation to the local geometry of the gap is investigated. A numerical solution algorithm for the flow in a narrow gap has been developed based on the Stokes equations. For a model problem the differences between the pressure and velocity fields according to the Stokes model and the Reynolds equation have been investigated. The configuration entails a lower flat surface together with an upper surface (flat or parabolic) in which a local defect (single asperity) of known geometry has been embedded. It is investigated how the magnitude of the differences develops as a function of the geometric parameters of the film and the feature. Finally, it is discussed to what extend for these problems a perturbation approach can provide accurate corrections to be applied to the Reynolds solution.

1.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamps Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Phil. Trans. of the Royal Society
,
177
, pp.
157
234
.
2.
Elrod
,
H. G.
,
1979
, “
A General Theory for Laminar Lubrication With Reynolds Roughness
,”
ASME J. Lubr. Technol.
,
101
, pp.
8
14
.
3.
Tzeng
,
S. T.
, and
Saibel
,
E.
,
1967
, “
Surface Roughness Effects on Slider Bearing Lubrication
,”
ASLE Trans.
,
10
, pp.
334
338
.
4.
Tzeng
,
S. T.
, and
Saibel
,
E.
,
1967
, “
On the Effects of Surface Roughness in the Hydrodynamic Lubrication Theory of a Short Journal Bearing
,”
Wear
,
10
, pp.
179
184
.
5.
Christensen
,
H.
,
1970
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.
6.
Christensen
,
H.
,
1971
, “
Some Aspects of the Functional Influence of Surface Roughness in Lubrication
,”
Wear
,
17
, pp.
149
163
.
7.
Christensen, H., and Tonder, K., 1971, “The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width,” ASME J. Tribol., pp. 324–330.
8.
Christensen, H., and Tonder, K., 1973, “The Hydrodynamic Lubrication of Rough Journal Bearings,” ASME J. Tribol., pp. 166–172.
9.
Elrod, H. G., 1973, “Thin-Film Lubrication Theory for Newtonian Fluids With Surfaces Possessing Striated Roughness or Grooving,” ASME J. Lubr. Technol., pp. 484–489.
10.
Elrod, H. G., 1977, “A Review of Theories for Fluid Dynamic Effects of Roughness on Laminar Lubricating Films,” Proceedings of the 4th Leeds Lyon Symposium on Tribology, Mechanical Engineering Publications, pp. 11–26.
11.
Cheng
,
H. S.
, and
Dyson
,
A.
,
1977
, “
Elastohydrodynamic Lubrication of Circumferentially-Ground Rough Disks
,”
ASLE Trans.
,
21
, pp.
25
40
.
12.
Chow, L. S. H., and Cheng, H. S., 1976, “The Effect of Surface Roughness on the Average Film Thickness Between Lubricated Rollers,” ASME J. Tribol., pp. 177–124.
13.
Chow
,
P. L.
, and
Saibel
,
E. A.
,
1978
, “
On the Roughness Effect in Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
, pp.
176
180
.
14.
Sun
,
D. C.
,
1978
, “
On the Effects of Two-Dimensional Reynolds Roughness in Hydrodynamic Lubrication
,”
Proc. R. Soc. London, Ser. A
,
364
, pp.
89
106
.
15.
Phan-Thien
,
N.
,
1981
, “
On the Effects of Parallel and Transverse Stationary Random Surface Roughness in Hydrodynamics Lubrication
,”
Proc. R. Soc. London, Ser. A
,
374
, pp.
569
591
.
16.
Phan-Thien
,
N.
,
1982
, “
Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
,
383
, pp.
439
446
.
17.
Phan-Thien
,
N.
,
1982
, “
On the Mean Reynolds Equation in the Presence of Homogeneous Random Surface Roughness
,”
ASME J. Tribol.
,
49
, pp.
476
480
.
18.
Phan-Thien
,
N.
, and
Atkinson
,
J. D.
,
1982
, “
On the Effects of Homogeneous Reynolds Roughness in a Two-Dimensional Slider Bearing With Exponential Film Thickness
,”
ASME J. Tribol.
,
104
, pp.
220
226
.
19.
Prakash
,
J.
,
1984
, “
On the Lubrication of Rough Rollers
,”
ASME J. Tribol.
,
106
, pp.
211
217
.
20.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
,
100
, pp.
12
17
.
21.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
,
101
, pp.
220
230
.
22.
Teale
,
J. L.
, and
Lebeck
,
A. O.
,
1980
, “
An Evaluation of the Average Flow Model for Surface Roughness Effects in Lubrication
,”
ASME J. Tribol.
,
106
, pp.
440
447
.
23.
Tripp
,
J. H.
,
1983
, “
Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method
,”
ASME J. Tribol.
,
105
, pp.
458
465
.
24.
Sadeghi
,
F.
, and
Sui
,
P. C.
,
1989
, “
Compressible Elastohydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
99
, pp.
2
6
.
25.
Patir, N., and Cheng, H. S., 1978, “Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts,” Proc. 1977 Leeds Lyon Symposium on Tribology, Elsevier, pp. 15–21.
26.
Tripp, J. H., and Hamrock, B. J., 1985, “Surface Roughness Effects in Elastohydrodynamic Contacts,” Proc. 1984 Leeds Lyon Symposium on Tribology, Elsevier, pp. 30–39.
27.
Goglia
,
P. R.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1984
, “
The Effects of Irregularities on the Elastohydrodynamic Lubrication of Sliding Line Contacts: Part I—Single Irregularities
,”
ASME J. Tribol.
,
106
, pp.
104
112
.
28.
Goglia
,
P. R.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1984
, “
The Effects of Irregularities on the Elastohydrodynamic Lubrication of Sliding Line Contacts: Part II—Wavy Surfaces
,”
ASME J. Tribol.
,
107
, pp.
113
119
.
29.
Venner, C. H., Kaneta, M., and Lubrecht, A. A., 2000, “Surface Roughness in Elastohydrodynamically Lubricated Contacts,” Proceedings of the 26th Leeds-Lyon Conference, Leeds, Sept. 1999, Elsevier Tribology Series, 38, Dowson et al., eds., pp. 25–36.
30.
Venner, C. H., Kaneta, M., Nishikawa, H., and Jacod, B., 2001, “Effects of Waviness on the Film Thickness in a Circular EHL Contact Under Rolling/Sliding,” Proceedings Int. Tribology Conference, Nagasaki 2000, Japanese Society of Tribologists, ISBN 4-9900139-4-8, pp. 631–636.
31.
Wijnant
,
Y. H.
,
Venner
,
C. H.
, and
Larsson
,
R.
,
1999
, “
Effects of Structural Vibrations on the Film Thickness in an EHL Circular Contact
,”
ASME J. Tribol.
,
121
, pp.
259
264
.
32.
Kaneta
,
M.
,
1992
, “
Effects of Surface Roughness in Elastohydrodynamic Lubrication
,”
JSME Int. J., Ser. III
,
35
(
4
), pp.
535
546
.
33.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1994
, “
Numerical Simulation of a Transverse Ridge in a Circular EHL Contact Under Rolling/Sliding
,”
ASME J. Tribol.
,
116
, pp.
751
761
.
34.
Sun, D. C., and Chen, K. K., 1977, “First Effects of Stokes Roughness on Hydrodynamic Lubrication,” ASME J. Lubr. Technol., pp. 2–9.
35.
Phan-Thien
,
N.
,
1981
, “
On the Effects of the Reynolds and Stokes Surface Roughnesses in a Two-Dimensional Slider Bearing
,”
Proc. R. Soc. London, Ser. A
,
377
, pp.
349
362
.
36.
Myllerup, C. M., and Hamrock, B. J., 1992, “Local Effects in Thin Film Lubrication,” Proceedings of the 19th Leeds Lyon Symposium on Tribology, D. Dowson et al., eds., Elsevier Tribology Series, 25, pp. 39–57.
37.
Myllerup
,
C. M.
, and
Hamrock
,
B. J.
,
1994
, “
Perturbation Approach to Hydrodynamic Lubrication Theory
,”
ASME J. Tribol.
,
116
, pp.
110
118
.
38.
Noordmans, J., “Solutions of Highly Anisotropic Stokes Equations for Lubrication Problems,” Proceedings of the Second ECCOMAS Conference on Numerical Methods in Engineering, 9–13 September 1996, Paris, France, J. A. Desideri, P. Le Tallec, E. Onate, J. Periaux, E. Stein, eds., John Wiley & Sons, Chichester, pp. 960–965.
39.
Scha¨fer, C. T., Giese, P., and Woolley, N. H., 1999, “Elastohydrodynamically Lubricated Line Contact Based on the Navier-Stokes Equations,” Proceedings of the 26th Leeds Lyon Conference on Tribology, Elsevier Tribology Series, D. Dowson et al., eds., 38, pp. 57–69.
40.
Almqvist, T., 2001, “Numerical Simulation of Elastohydrodynamic and Hydrodynamic Lubrication Using the Navier-Stokes and Reynolds Equations,” Licentiate Thesis, Lulea¨ University of Technology, Department of Mechanical Engineering, Sweden.
41.
Bair
,
S.
,
Khonsari
,
M.
, and
Winer
,
W. O.
,
1998
, “
High-Pressure Rheology of Lubricants and Limitations of the Reynolds Equation
,”
Tribol. Int.
,
31
(
10
), pp.
573
586
.
42.
Odyck van, D. E. A., 2001, “Stokes Flow in Thin Films,” Ph.D. thesis, University of Twente, The Netherlands.
43.
Odyck van, D. E. A., and Venner, C. H., 2001, “Compressible Stokes Flow in Thin Films,” internal report, University of Twente, Enschede.
44.
Oosterlee, K., 1993. “Robust Multigrid Methods for the Steady and Unsteady Incompressible Navier-Stokes Equations in General Coordinates,” Ph.D. thesis, Delft University, The Netherlands.
45.
Warsi, Z. U. A., 1993, Fluid Dynamics, Theoretical and Computational Approaches, CRC Press.
46.
Harlow
,
F.
, and
Welch
,
J.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow
,”
Phys. Fluids
,
8
, pp.
2182
2189
.
47.
Richtmyer, R. D., and Morton, K. W., 1967, “Difference Methods for Initial Value Problems,” 2nd ed., Wiley-Interscience, London.
48.
Hackbusch, W., 1992. “Elliptic Differential Equations, Theory and Numerical Treatment,” Springer Series in Computational Mathematics, 18, Springer-Verlag, Berlin.
49.
Brandt, A., 1982, “Guide to Multigrid Development,” Multigrid Methods: Lecture Notes in Mathematics, 960, W. Hackbusch and U. Trottenberg, eds., Springer Verlag, Berlin, pp. 220–312.
50.
Stu¨ben, K., and Trottenberg, U., 1982, “Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications,” Multigrid Methods: Lecture Notes in Mathematics, 960, W. Hackbusch and U. Trottenberg, eds., Springer-Verlag, Berlin, pp. 1–176.
51.
Hackbusch, W., 1985, Multi-Grid Methods and Applications, Springer-Verlag, Berlin.
52.
Briggs, W. L., 1987, A Multigrid Tutorial, SIAM.
53.
Wesseling, P., 1992, An Introduction to Multigrid Methods, John Wiley & Sons.
54.
Joppich, W., 1996, Grundlagen der Mehrgittermethode, GMD, Sankt Augustin.
55.
Venner, C. H., and Lubrecht, A. A., 2000, Multigrid Methods in Lubrication, Elseviers Tribology Series, 37, D. Dowson, ed., ISBN 0-444-50503-2, Elsevier, New York.
56.
Vanka
,
S. P.
,
1985
, “
Block-Implicit Calculation of Steady Turbulent Recirculating Flows
,”
Int. J. Heat Mass Transf.
,
28
, pp.
2093
2103
.
57.
Moffat
,
H. K.
,
1964
, “
Viscous and Resistive Eddies Near a Sharp Corner
,”
J. Fluid Mech.
,
18
, pp.
1
18
.
You do not currently have access to this content.