The rough surface contact in a tribological process involves frictional heating and thermoelastic deformations. A three-dimensional thermal-mechanical asperity contact model has been developed, which takes into account steady-state heat transfer, asperity distortion due to thermal and elastic deformations, and material yield. The finite-element method (FEM), fast Fourier transform (FFT), and conjugate gradient method (CGM) are employed as the solution methods. The model is used to analyze the thermal-mechanical contact of typical rough surfaces and investigate the importance of thermal effects on the contact performance of surface asperities.
Issue Section:
Technical Papers
1.
Lee
, S. C.
, and Ren
, N.
, 1996
, “Behavior of Elastic-Plastic Rough Surface Contact as Affected by Surface Topography, Load, and Material Hardness
,” STLE Tribol. Trans.
, 39
, pp. 16
–71
.2.
Kral
, E. R.
, and Komvopoulos
, K.
, 1997
, “Three-Dimensional Finite Element Analysis of Subsurface Stress and Strain Fields Due to Sliding Contact on an Elastic-Plastic Layered Medium
,” ASME J. Tribol.
, 119
, pp. 332
–341
.3.
Lubrecht
, A. A.
, and Ioannides
, E.
, 1991
, “A Fast Solution of the Dry Contact problem and the Associated Subsurface Stress Field, Using Multilevel Techniques
,” ASME J. Tribol.
, 113
, pp. 128
–133
.4.
Merriman
, T.
, and Kannel
, J.
, 1989
, “Analyses of the Role of Surface Roughness on Contact Stresses Between Elastic Cylinders With and Without Soft Surface Coating
,” ASME J. Tribol.
, 111
, pp. 87
–94
.5.
Goryacheva
, I.
, Sadeghi
, F.
, and Nickel
, D. A.
, 1996
, “Internal Stresses in Contact of a Rough Body and a Viscoelastic Layered Semi-Infinite Plane
,” ASME J. Tribol.
, 118
, pp. 131
–136
.6.
Sayles
, R. S.
, 1996
, “Basic Principles of Rough Surface Contact Analysis Using Numerical Methods
,” Tribol. Int.
, 29
, pp. 639
–650
.7.
Azarkhin
, A.
, Barber
, J. R.
, and Rolf
, R. L.
, 1989
, “Combined Thermal-Mechanical Effects in Frictional Sliding
,” Key Eng. Mater.
, 33
, pp. 135
–160
.8.
Ting
, B. Y.
, and Winer
, W. O.
, 1989
, “Frictional-Induced Thermal Influences in Elastic Contact Between Spherical Asperities
,” ASME J. Tribol.
, 111
, pp. 315
–322
.9.
Ju
, Y.
, and Farris
, T. N.
, 1997
, “FFT Thermoelastic Solutions for Moving Heat Sources
,” ASME J. Tribol.
, 119
, pp. 156
–162
.10.
Lu
, C. T.
, and Bryant
, M. D.
, 1994
, “Evaluation of Subsurface Stresses in a Thermal Mound with Application to Wear
,” Wear
, 177
, pp. 15
–24
.11.
Liu
, G.
, Wang
, Q.
, and Lin
, C.
, 1999
, “A Survey of Current Models for Simulating the Contact between Rough Surfaces
,” STLE Tribol. Trans.
, 42
, pp. 581
–591
.12.
Liu
, G.
, and Wang
, Q.
, 2000
, “Thermoelastic Asperity Contacts, Frictional Shear, and Parameter Correlations
,” ASME J. Tribol.
, 122
, pp. 300
–307
.13.
Wang
, Q.
, and Liu
, G.
, 1999
, “A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,” STLE Tribol. Trans.
, 42
, No. 4
, pp. 763
–770
.14.
Huang
, J. H.
, and Ju
, F. D.
, 1985
, “Thermomechanical Cracking Due to Moving Frictional Loads
,” Wear
, 102
, pp. 81
–104
.15.
Ju
, Y.
, and Farris
, T. N.
, 1996
, “Spectral Analysis of Two-Dimensional Contact Problems
,” ASME J. Tribol.
, 118
, pp. 320
–328
.16.
Stanley
, H. M.
, and Kato
, T.
, 1997
, “An FFT-Based Method for Roughness Surface Contact
,” ASME J. Tribol.
, 119
, pp. 481
–485
.17.
Nogi
, T.
, and Kato
, T.
, 1997
, “Influence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model
,” ASME J. Tribol.
, 119
, pp. 493
–500
.18.
Hu
, Y. Z.
, Barber
, G. C.
, and Zhu
, D.
, 1999
, “Numerical Analysis for the Elastic Contact of Real Surfaces
,” STLE Tribol. Trans.
, 42
, No. 3
, pp. 443
–452
.19.
Polonsky
, I. A.
, and Keer
, L. M.
, 1999
, “A New Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,” Wear
, 231
, pp. 206
–219
.20.
Polonsky
, I. A.
, and Keer
, L. M.
, 2000
, “A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,” ASME J. Tribol.
, 122
, pp. 30
–35
.21.
Polonsky
, I. A.
, and Keer
, L. M.
, 2000
, “Fast Methods for Solving Rough Contact Problems: A Comparative Study
,” ASME J. Tribol.
122
, pp. 36
–41
.22.
Liu
, S. B.
, Wang
, Q.
, and, Liu
, G.
, 2000
, “A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,” Wear
, 243
, No. 1–2
, pp. 101
–110
.23.
Johnson, K. L., 1996, Contact Mechanics, Cambridge University Press, Cambridge, UK.
24.
Lee
, S.
, and Cheng
, H. S.
, 1992
, “On the Relation of Loa to Average Gap in the Contact Between Surfaces with Longitudinal Roughness
,” STLE Tribol. Trans.
, 35
, pp. 523
–529
.25.
Love
, A. E. H.
, 1929
, “The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,” Philos. Trans. R. Soc. London, Ser. A
, 228
, pp. 377
–420
.26.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran 77—The Art of Scientific Computing (second edition), Cambridge University Press, Cambridge, U.K.
27.
Tian
, X.
, and Kennedy
, F. E.
, 1993
, “Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding
,” ASME J. Tribol.
, 115
, pp. 411
–418
.28.
Obara
, S.
, and Kato
, T.
, 1995
, “Effect of Thermal Distortion on Wear of Composites
,” ASME J. Tribol.
, 117
, pp. 622
–628
.Copyright © 2001
by ASME
You do not currently have access to this content.