In the past few decades the research efforts towards efficient solutions of crankshaft bearing using both rapid (e.g., analytical, semi-analytical, curve fits) and rigorous numerical approaches have made sufficient progress. Analytical solutions compromise on accuracy. In contrast numerical methods require very high computational time and facilities with large memory requirements. These features make it very difficult to obtain a solution that is optimal with respect to memory requirements, computational speed and accuracy. Therefore, here a hybrid procedure for thermal analysis of crankshaft bearings is attempted, which uses a combination of both the analytical and numerical solution techniques. Operational parameters such as journal velocity and effective viscosity are calculated with reasonable accuracy using analytical method. Other parameters such as maximum pressure, oil-flow, and power loss are evaluated by numerical technique. Experiments to validate the proposed hybrid procedure are performed, by developing a test rig that simulates the speed and load conditions usually encountered in practice. A number of experiments at different speeds and loads are performed to check the reliability of the global energy balance (based on effective viscosity assumption) in dynamically loaded bearing. The hybrid methodology is described by a flow chart and can conveniently be programmed on a personal computer. The predictions of two crankshaft main bearings using the proposed methodology are compared with those obtained by rigorous transient thermohydrodynamic (THD) analysis. [S0742-4787(00)02103-2]

1.
Booker
,
J. F.
,
1971
, “
Dynamically Loaded Journal Bearings: Numerical Application of the Mobility Method
,”
ASME J. Lubr. Technol.
,
93
, pp.
168
176
.
2.
Goenka
,
P. K.
,
1984
, “
Analytical Curve Fits for Solution Parameters of Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
106
, pp.
421
428
.
3.
Hirani
,
H.
,
Athre
,
K.
, and
Biswas
,
S.
,
1999
, “
Dynamically Loaded Finite Length Journal Bearings: Analytical Method of Solution
,”
ASME J. Tribol.
,
121
, pp.
844
852
.
4.
Goenka
,
P. K.
,
1984
, “
Dynamically Loaded Journal Bearings: Finite Element Method Analysis
,”
ASME J. Tribol.
,
106
, pp.
429
439
.
5.
Safar
,
Z. S.
,
1979
, “
A Thermohydrodynamic Solution for Finite Journal Bearings Under Dynamic Loading Conditions
,”
Tribol. Int.
,
12
, pp.
225
229
.
6.
Fantino
,
B.
, and
Frene
,
J.
,
1985
, “
Comparison of Dynamic Behavior of elastic Connecting Rod Bearing in Both Petrol and Diesel Engines
,”
ASME J. Tribol.
,
107
, pp.
87
91
.
7.
Tempel
,
L. V. D.
,
Moes
,
H.
, and
Bosma
,
R.
,
1985
, “
Numerical Simulation of Dynamically Loaded Flexible Short Journal Bearings
,”
ASME J. Tribol.
,
107
, pp.
396
401
.
8.
Bates
,
T. W.
,
Fantino
,
B.
,
Launay
,
L.
, and
Frene
,
J.
,
1990
, “
Oil Film Thickness in an Elastic Connecting-Rod Bearing: Comparison Between Theory and Experiments
,”
STLE Tribol. Trans.
,
33
, pp.
254
266
.
9.
Labouff
,
G. A.
, and
Booker
,
J. F.
,
1985
, “
Dynamically Loaded Journal Bearings: A Finite Element for Rigid and Elastic Surfaces
,”
ASME J. Tribol.
,
107
, pp.
505
515
.
10.
Moes
,
H.
,
Ten Hoeve
,
P. B.
, and
Van der Helm
,
J.
,
1989
, “
Thermal Effects in Dynamically Loaded Flexible Journal Bearings
,”
ASME J. Tribol.
,
111
, pp.
49
55
.
11.
Khonsari
,
M. M.
, and
Wang
,
S. H.
,
1992
, “
Notes on Transient THD Effects in a Lubricating Film
,”
STLE Tribol. Trans.
,
35
, pp.
177
183
.
12.
Bonneau
,
D.
,
Guines
,
D.
,
Frene
,
J.
, and
Toplosky
,
J.
,
1995
, “
EHD Analysis Including Structural Inertia Effects and a Mass-Conserving Cavitation Model
,”
ASME J. Tribol.
,
117
, pp.
540
547
.
13.
Paranjpe
,
R. S.
, and
Han
,
T.
,
1995
, “
A Transient Thermohydrodynamic Analysis Including Mass Conserving Cavitation for Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
117
, pp.
369
378
.
14.
Paranjpe
,
R. S.
,
1996
, “
A Study of Dynamically Loaded Engine Bearings Using a Transient Thermohydrodynamic Analysis
,”
STLE Tribol. Trans.
,
39
, pp.
636
644
.
15.
Hirani
,
H.
,
Rao
,
T. V. V. L. N.
,
Athre
,
K.
, and
Biswas
,
S.
,
1997
, “
Rapid Performance Evaluation of Journal Bearings
,”
Tribol. Int.
,
30
, pp.
825
834
.
16.
Hirani, H., Athre, K., and Biswas, S., 1997, “An Approximate Thermal Analysis of Engine Bearings,” Proc of ICIT ’97, Advances in Industrial Tribology, Dec. 2–5, Calcutta, India, pp. 186–193.
17.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
, pp.
350
354
.
18.
Brewe
,
D. E.
,
1986
, “
Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
,
108
, pp.
628
637
.
19.
Paranjpe
,
R. S.
, and
Goenka
,
P. K.
,
1990
, “
Analysis of Crankshaft Bearings Using a Mass Conserving Algorithm
,”
STLE Tribol. Trans.
,
33
, pp.
333
344
.
20.
Hirani, H., 1998, “Theoretical and Experimental Studies on Design of Dynamically Loaded Journal Bearing,” Ph.D. thesis, Indian Institute of Technology Delhi, India.
21.
Martin
,
F. A.
, and
Lee
,
C. S.
,
1983
, “
Feed Pressure Flow in Plain Journal Bearings
,”
Trans. ASLE
,
26
, pp.
381
392
.
22.
Boedo, S., and Booker, J. F., 1990, “Feed Pressure Flow in Connecting Rod Bearings,” Proc. 17th Leeds-Lyon Symposium on Tribology, Leeds—Vehicle Tribology, D. Dowson, C. M. Taylor, and M. Godet, eds., Elsevier, New York, pp. 55–62.
23.
Martin, F. A., and Stanojevic, M., 1990, “Oil Flow in Connecting Rod Bearings,” Proc. 17th Leeds-Lyon Symposium on Tribology, Leeds—Vehicle Tribology, D. Dowson, C. M. Taylor, and M. Godet, eds., Elsevier, New York, pp. 69–80.
24.
Conway-Jones
,
J. M.
,
Martin
,
F. A.
, and
Gojon
,
R.
,
1991
, “
Refinement of Engine Bearing Design Techniques
,”
Tribol. Int.
,
24
, pp.
119
127
.
25.
Jones, G. J., 1983, “Crankshaft Bearings: Oil Film History,” Tribology of Reciprocating Engines, Proc. 9th Leeds-Lyon Symposium on Tribology, Leeds, D. Dowson, M. Godet, and D. Berthe, eds., Butterworths, London, pp. 83–88.
26.
Hirani, H., Athre, K., and Biswas, S., 1998, “A Simplified Mass Conserving Algorithm for Journal Bearing Under Large Dynamic Loads,” Eleventh International Symposium on Transport Phenomena, Nov. 29–Dec. 3, Taiwan.
27.
Hirani
,
H.
,
Athre
,
K.
, and
Biswas
,
S.
,
1998
, “
Rapid and Globally Convergent Method for Dynamically Loaded Journal Bearing Design
,”
J. Eng. Tribol., J3
,
212
, pp.
207
214
.
You do not currently have access to this content.