Dry frictional sliding of two elastic bodies, one of which has a periodic wavy surface, is considered. Such a model represents the frictional sliding of two nominally flat surfaces, one of which has periodically spaced asperities. The dependence of the true contact area on loading is analyzed by using the plane strain theory of elasticity. Fourier series and integral transform techniques are applied to reduce the problem to an integral equation which is solved using a series of Jacobi polynomials. For steady-state dynamic frictional sliding with given values of the friction coefficient, materials constants, and sliding velocity, the dependence of the contact zone length on the remotely applied tractions is determined. The results indicate a decrease of the minimum applied traction required to close the gap between the bodies, with an increase of the friction coefficient and/or the sliding velocity. A resonance exists as the sliding velocity approaches the Rayleigh wave speed of the flat body. [S0742-4787(00)01403-X]

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
2.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
316
, pp.
97
121
.
3.
Kapoor
,
A.
,
Williams
,
J. A.
, and
Johnson
,
K. L.
,
1994
, “
The Steady State Sliding of Rough Surfaces
,”
Wear
,
175
, pp.
81
92
.
4.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
4
, I-35, pp.
1
35
.
5.
Larsson
,
J.
,
Biwa
,
S.
, and
Storakers
,
B.
,
1999
, “
Inelastic Flattening of Rough Surfaces
,”
Mech. Mater.
,
31
, pp.
29
41
.
6.
Tabor
,
D.
,
1981
, “
Friction—the Present State of Our Understanding
,”
ASME J. Lubr. Technol.
,
103
, pp.
169
179
.
7.
Sadowski
,
M. A.
,
1928
, “
Zwiedimensionale Probleme der Elastizitatshtheorie
,”
Z. Angew. Math. Mech.
,
B.8
, No.
2
, pp.
107
121
.
8.
Westergaard
,
H. M.
,
1939
, “
Bearing Pressures and Cracks
,”
ASME J. Appl. Mech.
,
6
, No.
2
, pp.
A49–A53
A49–A53
.
9.
Shtaerman, I. Ya, 1949, Contact Problem in the Theary of Elasticity, Gostehizdat, Moscow. (In Russian.)
10.
Dundurs
,
J.
,
Tsai
,
K. C.
, and
Keer
,
L. M.
,
1973
, “
Contact Between Elastic Bodies With Wavy Surfaces
,”
J. Elast.
,
3
, pp.
109
115
.
11.
Kuznetsov
,
E. A.
,
1985
, “
Effect of Fluid Lubricant on the Contact Characteristics of Rough Elastic Bodies in Compression
,”
Wear
,
157
, pp.
177
194
.
12.
Kuznetsov
,
E. A.
,
1976
, “
Periodic Contact Problem for Half-Plane Allowing for Forces of Friction
,”
Sov. Appl. Mech.
,
12
, No.
10
, pp.
37
44
.
13.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Higginson
,
J. G.
,
1985
, “
The Contact of Elastic Regular Wavy Surfaces
,”
Int. J. Mech. Sci.
,
27
, pp.
383
396
.
14.
Manners
,
W.
,
1998
, “
Partial Contact Between Elastic Surfaces With Periodic Profiles
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
3203
3221
.
15.
Brock
,
L. M.
,
1996
, “
Some Analytical Results for Heating due to Irregular Sliding Contact of Thermoelastic Solids
,”
Indian J. Pure Appl. Math.
,
27
, pp.
1257
1278
.
16.
Salant
,
R. F.
, and
Flaherty
,
A. L.
,
1995
, “
Elastohydrodynamic Analysis of Reverse Pumping in Rotary Lip Seals With Microasperities
,”
ASME J. Tribol.
,
117
, pp.
53
59
.
17.
Bignari
,
C.
,
Bertetto
,
A. M.
, and
Mazza
,
L.
,
1999
, “
Photoelastic Measurments and Computation of the Stress Field and Contact Pressure in a Pneumatic Lip Seal
,”
Tribol. Int.
,
32
, pp.
1
13
.
18.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
,
1999
, “
Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces
,”
Tribol. Trans.
,
42
, pp.
511
516
.
19.
Adams
,
G. G.
,
1995
, “
Self-Excited Oscillations in Two Elastic Half-Spaces Sliding With a Constant Coefficient of Friction
,”
ASME J. Appl. Mech.
,
62
, pp.
867
872
.
20.
Adams
,
G. G.
,
1996
, “
Self-Excited Oscillations in Sliding With a Constant Friction Coefficient—A Simple Model
,”
ASME J. Tribol.
,
118
, pp.
819
823
.
21.
Wolfram, S., 1991, Mathematica, A System for Doing Mathematics by Computer, 2nd ed., Addison-Wesley, Reading, MA.
22.
Gelfand, I. M., and Shilov, G. E., 1964, Generalized Functions, 1, Academic Press, New York.
23.
Comninou
,
M.
, and
Dundurs
,
J.
,
1977
, “
Elastic Interface Waves Involving Separation
,”
ASME J. Appl. Mech.
,
44
, pp.
222
226
.
24.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Quarterly Appl. Math.
,
29
, pp.
525
534
.
25.
Adams
,
G. G.
,
1998
, “
Steady Sliding of Two Elastic Half-Spaces With Friction Reduction Due to Interface Stick-Slip
,”
ASME J. Appl. Mech.
,
65
, pp.
470
475
.
You do not currently have access to this content.