An analysis for compressible fluid spiral groove thrust bearings (SGTBs) and face seals (SGFSs) is presented. Zeroth- and first-order equations rendering the static and dynamic performance of SGFSs, respectively, are solved using the finite element method with a successive approximation scheme. Comparison of the present isothermal compressible fluid model for static and dynamic SGTB and SGFS performance validates previous narrow groove theory, finite difference, and finite element analyses. A discussion follows to indicate the importance of using a small number of grooves to prevent instabilities from negative damping in SGTBs and SGFSs when pressurization is lost. Force coefficients are shown to reach asymptotic limits as the axial excitation frequency increases.

1.
Bonneau
D.
,
Huitric
J.
, and
Tournerie
B.
,
1993
, “
Finite Element Analysis of Grooved Gas Thrust Bearings and Grooved Gas Face Seals
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
115
, pp.
348
354
.
2.
Cheng
H. S.
,
Castelli
V.
, and
Chow
C. Y.
,
1969
, “
Performance Characteristics of Spiral-Groove and Shrouded Rayleigh Step Profiles for High-Speed Non-contacting Gas Seals
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
91
, pp.
60
68
.
3.
Constantinescu
V. N.
, and
Galetuse
S.
,
1987
, “
On the Dynamic Stability of the Spiral-Grooved Gas-Lubricated Thrust Bearing
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
109
, pp.
183
188
.
4.
Constantinescu
V. N.
, and
Galetuse
S.
,
1992
, “
On Extending the Narrow Spiral-Groove Theory to Configurations of Interest in Seals
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
114
, pp.
563
566
.
5.
DiRusso, E., 1982, “Film Thickness Measurement for Spiral Groove and Rayleigh Step Lift Pad Self-Acting Face Seals,” NASA Technical Paper 2058.
6.
DiRusso, E., 1984, “Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals,” NASA Technical Paper 2266.
7.
DiRusso, E., 1985, “Dynamic Response of Film Thickness in Spiral-Groove Face Seals,” NASA Technical Paper 2544.
8.
James
D. D.
, and
Potter
A. F.
,
1967
, “
Numerical Analysis of the Gas-Lubricated Spiral-Groove Thrust Bearing-Compressor
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
89
, pp.
439
444
.
9.
Kowalski
C. A.
, and
Basu
P.
,
1995
, “
Reverse Rotation Capability of Spiral-Groove Gas Face Seals
,”
Tribology Transactions
, Vol.
38
, No.
3
, pp.
549
556
.
10.
Malanoski
S. B.
, and
Pan
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME JOURNAL OF BASIC ENGINEERING
, Vol.
87
, pp.
547
558
.
11.
Muijderman, E. A., 1966, Spiral Groove Bearings, Philips Technical Laboratory, Springer-Verlag, New York.
12.
Reddi
M. M.
, and
Chu
T. Y.
,
1970
, “
Finite Element Solution of the Steady-State Compressible Lubrication Problem
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
92
, pp.
495
503
.
13.
Reddy, J. N., 1993, Introduction to the Finite Element Method. Second Edition, McGraw-Hill, New York, pp. 246–249.
14.
Smalley
A. J.
,
1972
, “
The Narrow Groove Theory of Spiral Groove Gas Bearings: Development and Application of a Generalized Formulation for Numerical Solution
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
94
, pp.
86
92
.
15.
Van der Stegen, R. H. M., 1997, “Numerical Modeling of Self-Acting Gas Lubricated Bearings with Experimental Verification,” Ph.D. thesis. University of Twente, The Netherlands.
16.
Zirkelback
N.
, and
San Andre´s
L.
,
1997
, “
Finite Element Analysis of a Herringbone Groove Journal Bearing: A Parametric Study
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
120
, pp.
234
240
.
17.
Zirkelback, N., 1998, “Computational Analysis of Spiral Groove Thrust Bearings and Face Seals,” Texas A&M Turbomachinery Research Consortium Report No. TRC-SEAL-7-98.
This content is only available via PDF.
You do not currently have access to this content.