Two nonrotating elastic half-planes in quasi-static contact without coupling of the normal and tangential surface stresses are analyzed in this paper. It is proved that the tangential traction under constant normal forces and increasing tangential forces is equal to the difference between the actual normal pressure and the pressure for a smaller contact area, multiplied by the coefficient of friction. Every stick area corresponds to a contact area (or a configuration of multiple contact areas) that is smaller than the present contact area. In the same way as the contact area develops with increasing pressure, the stick area recedes with increasing tangential traction. General loading scenarios are solved by superposition of oblique increments under constant angles. As an example, this principle is applied to a rigid surface of the form Akxk, in contact on 0 ≤ x ≤ a and with a corner at x = 0, indenting an elastic half-plane.

1.
Abramowitz, M., Stegun, I. A., 1972, Handbook of Mathematical Functions, Dover, New York.
2.
Akella
P. N.
, and
Cutkosky
M. R.
,
1995
, “
Contact Transition Control with Semiactive Soft Fingertips
,”
IEEE Trans, on Robotics and Automation
, Vol.
11
, pp.
859
867
.
3.
Bryant
M. D.
, and
Keer
L. M.
,
1982
, “
Rough Contact Between Elastically and Geometrically Identical Curved Bodies
,”
ASME Journal of Applied Mechanics
, Vol.
49
, pp.
345
352
.
4.
Cattaneo
C.
,
1938
, “
Sul contatto die due corpi elastici: distributione locale degli sforzi
,”
Academia Nazionale dei Lincei, Rendiconti, Serie 6
, Vol.
27
, pp.
342
348
.
5.
Comninou
M.
, and
Dundurs
J.
,
1982
, “
An Educational Elasticity Problem with Friction, Part 2: Unloading for Strong Friction and Reloading
,”
ASME Journal of Applied Mechanics
, Vol.
49
, pp.
47
51
.
6.
Cuttino
J. P.
, and
Dow
T. A.
,
1997
, “
Contact Between Elastic Bodies with an Elliptic Contact Interface in Torsion
,”
ASME Journal of Applied Mechanics
, Vol.
64
, pp.
144
148
.
7.
Dundurs
J.
,
Comninou
M.
,
1981
, “
An Educational Elasticity Problem with Friction, Part 1: Loading, and Unloading for Weak Friction
,”
ASME Journal of Applied Mechanics
, Vol.
48
, pp.
841
845
.
8.
Dundurs
J.
, and
Comninou
M.
,
1983
, “
An Educational Elasticity Problem with Friction, Part 3: General Load Paths
,”
ASME Journal of Applied Mechanics
, Vol.
50
, pp.
77
84
.
9.
Du¨rkopp, K., and Jorden, W., 1993, “Contact Analysis in Clamping-Roller Free-Wheel Clutches, in: Contact Mechanics,” Proc. 1st Int. Conf.,: Aliabadi, M. H., Brebbia, C. A., eds. Computational Mechanics Publications, Southampton, pp. 435–442.
10.
Galin, L. A., 1953, “Contact Problems in the Theory of Elasticity” Moscow (Engl. Transl. by H. Moss, North Carolina State College, Dept. Maths., 1961).
11.
Greenwood, J. A., and Williamson, J. B. P., 1966, “Contact of Nominally Flat Surfaces,” Proc. R. Sac., Series A295, pp. 300–319.
12.
Hanson
M. T.
, and
Keer
L. M.
,
1989
, “
Cyclic Tangential Loading of Dissimilar Elastic Bodies
,”
Int. J. Mech. Set
, Vol.
31
, pp.
107
119
.
13.
Haslinger
K. H.
, and
Steininger
D. A.
,
1995
, “
Experimental Characterization of Sliding and Impact Friction Coefficients Between Steam Generator Tubes and AVB Supports
,”
J. Sound Vib.
, Vol.
181
, pp.
851
871
.
14.
Hertz
H.
,
1882
, “
U¨ber die Beru¨hrung fester elastischer Ko¨rper
,”
Journal fu¨r die reine und angewandte Mathematik (Crelle)
, Vol.
92
, pp.
156
171
.
15.
Hills, D. A., Nowell, D., and Sackfield, A., 1993, Mechanics of Elastic Contacts, Butterworth-Heineman, Oxford.
16.
Iwan
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME Journal of Applied Mechanics
, Vol.
33
, pp.
893
900
.
17.
Ja¨ger
J.
,
1997
, “
Half-Planes Without Coupling Under Contact Loading
,”
Arch. Appl. Mech.
, Vol.
67
, pp.
247
259
.
18.
Ja¨ger
J.
,
1996
a, “
Stepwise Loading of Half-Spaces in Elliptical Contact
,”
ASME Journal of Applied Mechanics
, Vol.
63
, pp.
766
773
.
19.
Ja¨ger, J., 1996b, “Non-Hertzian Contact Models for Ultrasonic Impact Motors,” 2nd European Nonhnear Oscillations Conference, Prague, Sept, 9–13, Vol. 1, L. Pu˚st, F. Peterka, eds., Publishing House of Czech Techn, University.
20.
Ja¨ger, J., 1995, “Contact with Friction of Elastically Similar Bodies,” AMD-Vol. 205, Impact Waves and Fracture, Batra, R. C., Mai. A. K., MacSithigh, G. P., eds., ASME, New York, pp. 129–153.
21.
Ja¨ger
J.
,
1994
a, “
Oblique Impact of Similar Bodies with Circular Contact
,”
Acta Mech.
Vol.
107
, pp.
101
115
.
22.
Ja¨ger
J.
,
1994
b, “
Torsional Impact of Elastic Spheres
,”
Arch. Appl. Mech.
, Vol.
64
, pp.
235
248
.
23.
Ja¨ger, J., 1992, “Elastic Impact with Friction,” Thesis, TH Delft: Dep. Maths, and Infs., Delft, The Netherlands.
24.
Jarze˛bowski
A.
, and
Mro´z
Z.
,
1994
, “
On Slip and Memory Rules in Elastic, Friction Contact Problems
,”
Acta Mechanica
, Vol.
102
, pp.
199
216
.
25.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press.
26.
Kalker, J. J., 1990, Three-Dimensional Elastic Bodies in Rolling Contact, Kluwer, Dordrecht.
27.
Khan, A. S., and Huang, S., 1995, Continuum Theory of Plasticity, Wiley, N.Y.
28.
Mindlin
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME Journal of Applied Mechanics
, Vol.
16
, pp.
259
268
.
29.
Mindlin
R. D.
, and
Deresiewicz
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
J. Appl. Mech.
, Vol.
20
, pp.
327
344
.
30.
Mro´z
Z.
,
1969
, “
An Attempt to Describe the Behavior of Metals Under Cyclic Loads Using a More General Workhardening Model
,”
Acta Mechanica
, Vol.
7
, pp.
199
212
.
31.
Muskhelishvili, N. I. “Some Basic Problems of the Mathematical Theory of Elasticity, Trans. by J. R. M. Radok, Noordhoff, 1953.
32.
Neimark
Yu. I.
, and
Fufayev
N. A.
,
1995
, “
The Painleve´ Paradoxes and the Dynamics of a Brake Shoe
,”
J. Appl. Maths. Mechs.
, Vol.
59
, pp.
343
352
.
33.
Poritsky
H.
,
1950
, “
Stresses and Deflections of Cylindrical Bodies in Contact with Application to the Contact of Gears and of Locomotive Wheels
,”
ASME Journal of Applied Mechanics
, Vol.
17
, pp.
191
201
.
34.
Reynolds
O.
,
1875
, “
On Rolling Friction
,”
Phil. Trans. Royal Society
, Vol.
166
, pp.
155
175
.
35.
Seridi, A., and Dobry, R., 1984, “An Incremental Elastic-Plastic Model for the Force-Displacement Relation at the Contact Between Elastic Spheres,” Research Report, Rensselaer Polytechnic Institute, Civ. Eng. Dep., Troy, N.Y.
36.
Szalwinski
C. M.
,
1985
, “
Flexibility of a Contact Area of an Isotropic Elastic Body
,”
ASME Journal of Applied Mechanics
, Vol.
52
, pp.
62
66
.
37.
Tricomi, F. G., 1985, Integral Equations, Dover, N.Y.
This content is only available via PDF.
You do not currently have access to this content.