Available models are not suitable for calculating the load rating of bearings when an infinite life is required. This paper presents a new model that has been developed from a detailed analysis of the damage mechanism responsible for failure of bearings operating under EHD pure rolling conditions. It is based on the comparison between the local shear stress concentration built up around inhomogeneities present in steels and the microyield stress of the martensitic matrix. The predictions of this model are in good agreement with some literature data concerning the fatigue limit of bearing steels. Finally, the influence of material parameters and operating conditions on the endurance limit of bearings is investigated.

1.
Becker, P. C., 1981, “Microstructural Changes Around Non-metallic Inclusions caused by Rolling-Contact Fatigue of Bearing Steels,” Metals Technology, June, pp. 234–243.
2.
Bo¨hmer H. J., 1993, “A New Approach to Determine the Effect of Nonmetallic Inclusions on Material Behavior in Rolling Contact,” ASTM STP 1195, pp. 211–221.
3.
Champaud, P., Esnouf, C., and Fouge`res, R., 1989, “Proposition d’un Crite`re d’Amorc¸age des Fissures en Fatigue de Contact Hertzien a` partir des Evolutions Microstructurales du Mate´riau Fatigue´,” Proceedings of the Spring Meeting of the S.F.M. Fatigue et Contacts Me´caniques, Paris, pp. 159–170.
4.
Chiu
Y. P.
,
Tallian
T. E.
, and
McCool
J. I.
,
1971
, “
An Engineering Model of Spalling Fatigue Failure in Rolling Contact; I The Subsurface Model
,”
Wear
, Vol.
17
, pp.
433
446
.
5.
Dowson, D., and Higginson, 1977, “Elasto-Hydrodynamic Lubrication,” International Series in Materials Science and Technology, Vol. 23, Pergamon Press, Oxford.
6.
Eshelby
J. D.
,
1961
, “
Elastic Inclusions and Inhomogeneities
,”
Prog. Solid Mech.
, Vol.
2
, 89, pp.
87
140
.
7.
Furumura, K., Shirota, S., and Hirakawa, K., 1975, “The Subsurface-initiated and the Surface-initiated Rolling Fatigue Life of Bearing Steels,” Proceedings of the JSLE-ASLE International Conference on Lubrication, Tokyo, pp. 475–483.
8.
Guy
P.
,
Meynaud
P.
,
Vincent
A.
,
Dudragne
G.
, and
Baudry
G.
,
1996
, “
Subsurface Damage Investigation by High Frequency Ultrasonic Echography on 100Cr6 Bearing Steel
,”
Tribology International
, Vol.
30
, No.
4
, pp.
247
259
.
9.
Harris
T. A.
,
Ionnides
E.
,
Ragen
M.
, and
Tam
H.
,
1990
, “
Endurance of Aircraft Gas Turbine Mainshaft Ball Bearings—Analysis Using Improved Fatigue Life Theory: Part 2—Application to a Bearing Operating Under Difficult Lubrication Conditions
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
309
316
.
10.
Ioannides
E.
, and
Harris
T. A., M.
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
107
, pp.
367
378
.
11.
Ioannides
E.
,
Harris
T. A.
, and
Ragen
M.
,
1990
, “
Endurance of Aircraft Gas Turbine Mainshaft Ball Bearings—Analysis Using Improved Fatigue Life Theory: Part 1—Application to a Long-life Bearing
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
304
308
.
12.
Ioannides, E., Jacobson, B., and Tripp, J. H., 1989, “Prediction of Rolling Bearing life under Practical operating Conditions,” Proc. 15th Leeds-Lyon Symposium on Tribology, Leeds 1988, pp. 181–187.
13.
Lamagne`re, P., Girodin, D., Meynaud, P., Vergne, F., and Vincent, A., 1996, “Study of Elasto-Plastic Properties of Microheterogeneities by Means of Nanoin-dentation Measurements: Application to Bearing Steels,” Materials Science and Engineering A215, pp. 134–142.
14.
Littman, W. E., and Widner, R. L., 1966, “Propagation of Contact Fatigue From Surface and Subsurface Origins,” ASME Journal of Basic Engineering, pp. 624–636.
15.
Loro¨sch, H. K., 1982, “Influence of Load on the Magnitude of the Life Exponent for Rolling Bearings,” Rolling Contact Fatigue testing of Bearing Steels, ASTM STP 771, J.J.C. Hoo, ed., American Society for Testing and Materials, pp. 275–292.
16.
Lo¨sche
T.
,
1989
, “
New Aspects in the Realistic Prediction of the Fatigue Life of Rolling Bearings
,”
Wear
, Vol.
134
, pp.
357
375
.
17.
Lormand, G., Meynaud, P., Vincent, A., Baudry, G., Girodin, D., and Dudragne, G., 1997, “From Cleanliness to Rolling Fatigue Life of Bearing Steels—a New Approach,” to be published in the Proceedings of the 5th Symposium on Bearing Steels: Into the 21st Century, ASTM STP 1327, J.J.C. Hoo, ed., American Society for Testing Materials.
18.
Lubrecht, A. A., Jacobson, B. O., and Loannides, E., 1990, “Lundberg Palmgren Revisited,” Proceedings of the Seminar Rolling Element Bearings—towards the 21st Century, pp. 17–20.
19.
Lundberg, G., and Palmgren, A., 1947, “Dynamic Capacity of Rolling Bearings,” Acta Polytechnica, Mech. Eng. Series I, Royal Swedish Academy of Engineering Science, No. 3, Vol. 7.
20.
Maeda
K.
,
Kashimura
H.
, and
Tsumshima
N.
,
1984
, “
Investigation on the Fatigue fracture of Core in Carburized Rollers of Bearings
,”
ASLE Transactions
, Vol.
29
,
1
, pp.
85
90
.
21.
Marze, A., Vincent, L., Coquillet, B., Munier, J., and Guiraldenq, P., 1979, “Evolution et De´gradation par Fatigue de la Stucture Martensitique d’un Acier Semi-Rapide,” Me´moires Scientifiques Revue Me´tallurgie, pp. 165–173.
22.
Miller
G. R.
, and
Keer
L. M.
,
1983
, “
On the Mechanics of Fatigue Contact Growth due to Contact Loading
,”
ASME Journal of Applied Mechanics
, Vol.
105
, pp.
615
620
.
23.
Monnot, J., Tricot, R., and Gueussier, A., 1970, “Re´sistance a` la Fatigue et Endurance des Aciers pour Roulements,” Revue de Me´tallurgie, Juillet-aouˆt, pp. 619–638.
24.
Moreira de Freitas
M.
, and
Franc¸ois
D.
,
1983
, “
Formation de Phase Blanche en Fatigue de Roulement
,”
Scripta Metallurgica
, Vol.
17
, pp.
683
686
.
25.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, Dordrecht, 587 p.
26.
Schlicht
H.
,
1973
, “
U¨ber die Entstehung von White Etching Areas (WEA) in Wa¨lzelementen
,”
Hart.-Tech. Mett.
, Vol.
28
, 2, pp.
112
123
.
27.
Swahn
H.
,
Becker
P. C.
, and
Vingsbo
O.
,
1976
, “
Martensite Decay During Rolling Contact Fatigue in Ball Bearings
,”
Metallurgical Transactions A
, Vol.
7A
, pp.
1099
1110
.
28.
Vincent, A., Lormand, G., Lamagnere, P., Gosset, L., Girodin, D., Dudragne, G., and Fougeres, R., 1997, “From White Etching Areas around Inclusions to Crack Nucleation in Bearing Steels under Rolling Contact Fatigue,” to be published in the Proceedings of the 5th Symposium on Bearing Steels: Into the 21st Century, ASTM STP 1327, J.J.C. Hoo, ed., American Society for Testing Materials.
29.
Voskamp
A. P.
,
1985
, “
Material Response to Rolling Contact Loading
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
107
, pp.
359
366
.
30.
Weibull, W., 1939, “A Statistical Theory of the Strength of Materials,” Proc. Royal Swedish Inst. Eng. Res., No. 151, pp. 4–45.
31.
Zaretsky, E. V., Poplawsky, J. V., and Peters, S. M., 1995, “Comparison of Life Theories for Rolling-Element Bearings,” STLE Preprint No. 95-AM-3F-3.
32.
Zwirlein, O., and Schlicht, H., 1982, “Rolling Contact Fatigue Mechanisms—Accelerated Testing Versus Field Performance,” ASTM STP 771, J.J.C. Hoo, ed., pp. 358–379.
This content is only available via PDF.
You do not currently have access to this content.