Single- and dual-cathode DC magnetron sputtering was used to produce TiB2 coatings and CNx/ZrN multilayers, respectively, with hardness exceeding 40 GPa. The composition, structure, topography, and mechanical properties were determined by various techniques, including Auger electron spectroscopy, X-ray diffraction, high-resolution electron microscopy, atomic force microscopy, and nanoindentation. An optimum combination of the sputtering pressure and substrate bias results in the production of ultrasmooth TiB2 coatings with hardness up to 50 GPa and excellent wetting properties. The rationale for studying the CNx/ZrN system is that ZrN(111) provides excellent lattice match to the hypothetical β-C3N4(0001) face (β-C3N4 was predicted to have mechanical properties comparable to diamond). Using a dual-cathode sputtering system, we produced crystalline multilayers of CNx/ZrN with bilayer thickness of 1–2 nm. Using various combinations of nitrogen partial pressure, target powers, and substrate bias, we found that the hardness of these coatings correlates very strongly with the occurrence of (111) texture of ZrN, consistent with the lattice-match strategy. Even with a ZrN volume fraction of 70 percent, such multilayer coatings have been synthesized with hardness in the 50 GPa regime.

1.
Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., 1978, Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Eden Praire, MN.
2.
Deng
H. J.
,
Chen
,
Inturi
R. B.
, and
Barnard
J. A.
,
1995
, “
Structure, Mechanical and Tribological Properties of dc Magnetron Sputtered TiB2 and TiB2 (N) Thin Films
,”
Surface and Coatings Technology
, Vol.
76/77
, pp.
609
614
.
3.
Elder
J.
,
Quist
P. A.
,
Rooswijk
B.
,
Voorst
J. D. W. van
, and
Nieuwkoop
J. van
,
1991
, “
CO2-laser-induced Chemical Vapor Deposition of TiB2
,”
Surface and Coatings Technology
, Vol.
45
, pp.
105
113
.
4.
Herr
W.
,
Mattes
B.
,
Broszeit
B.
, and
Kloos
K. H.
,
1991
, “
Fundamental Properties and Wear Resistance of r.f.-sputtered TiB2 and Ti(B, N) Coatings
,”
Mater. Sci. Eng. A.
, Vol.
140
, pp.
616
624
.
5.
Knotek
O.
,
1990
, “
Superhard Ti-B-C-N Coatings
,”
Surface and Coatings Technology
, Vol.
43/44
, pp.
107
115
.
6.
Li
D.
,
Chung
Y. W.
,
Wong
M. S.
, and
Sproul
W. D.
,
1993
, “
Nanoindentation Studies of Ultrahigh Strength Carbon Nitride Thin Films
,”
J. Appl. Phys.
, Vol.
74
, pp.
219
223
.
7.
Li
D.
,
Lin
X.
,
Dravid
V. P.
,
Chung
Y. W.
,
Chen
M. Y.
,
Wong
M. S.
, and
Sproul
W. D.
,
1994
a, “
Synthesis and Characterization of Super-Wear-Resistant Carbon Nitride Coatings
,”
Diamond Films and Technol.
, Vol.
4
, pp.
99
111
.
8.
Li
D.
,
Chung
Y. W.
,
Wong
M. S.
, and
Sproul
W. D.
,
1994
b, “
Nanoindentation and Tribological Studies of Ultrahigh Strength Carbon Nitride thin Films
,”
Tribo. Transactions
, Vol.
37
, pp.
479
482
.
9.
Li
D.
,
Cutiongco
E.
,
Chung
Y. W.
,
Wong
M. S.
, and
Sproul
W. D.
,
1995
a, “
Review of Synthesis and Characterization of Amorphous Carbon Nitride Thin Films
,”
Diamond Films and Technol.
, Vol.
5
, pp.
261
273
.
10.
Li
D.
,
Chu
X.
,
Cheng
S. C.
,
Lin
X. W.
,
Dravid
V. P.
, and
Chung
Y. W.
,
1995
b, “
Synthesis of Superhard Carbon Nitride Composite Coatings
,”
Appl. Phys. Lett.
, Vol.
67
, pp.
203
205
.
11.
Li
D.
,
Chung
Y. W.
,
Wong
M. S.
, and
Sproul
W. D.
,
1995
c, “
Mechanical Properties of Amorphous Carbon Nitride Thin Films Prepared by Reactive Magnetron Sputtering
,”
Tribo. Lett.
, Vol.
1
, pp.
87
93
.
12.
Li
D.
,
Chu
X.
,
Cheng
S. C.
,
Lin
X. W.
,
Dravid
V. P.
, and
Chung
Y. W.
,
1996
, “
Structure and Hardness Studies of CNx/TiN Nanocomposite Coatings
,”
Appl. Phys. Lett.
, Vol.
68
, pp.
1211
1213
.
13.
Liu
A. Y.
, and
Cohen
M. L.
,
1989
, “
Predication of New Low Compressibility Solids
,”
Science
, Vol.
245
, pp.
841
842
.
14.
Liu
A. Y.
, and
Cohen
M. L.
,
1990
, “
Structural Properties and Electronic Structure of Low-compressibility Materials: β-Si3N4 and hypothetical β-C3N4
,”
Physical Review B
, Vol.
41
, pp.
10727
10734
.
15.
Messier
R.
,
Giri
A. P.
, and
Roy
R. A.
,
1984
, “
Revised Structure Zone Model for Thin Film Physical Structure
,”
J. Vac. Sci. Technol. A
, Vol.
2
, pp.
500
503
.
16.
Muller
K. H.
,
1985
, “
Dependence of Thin-film Microstructure on Deposition Rate by Means of a Computer Simulation
,”
J. Appl. Phys.
, Vol.
58
(
7
), pp.
2573
2576
.
17.
Oliver
W. C.
, and
Pharr
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
, Vol.
7
, pp.
1564
1583
.
18.
Otter
F. A.
,
Amisola
G. B.
,
Roman
W. C.
, and
Hay
S. O.
,
1992
, “
Properties of Plasma Assisted Chemical Vapor Deposited Coatings of Titanium Boride on Ti-6Al-4V Alloy Substrates
,”
J. Vac. Sci. Technol. A
, Vol.
10
(
4
), pp.
2796
2801
.
19.
Rossi
R.
,
Andre
B.
,
Veen
A.
,
Mijnarends
P. E.
,
Schut
H.
,
Labohm
F.
,
Dunlop
H.
,
Delplancke
M. P.
, and
Hubard
K.
,
1994
, “
Physical Properties of a-C:N Films Produced by Ion Beam Assisted Deposition
,”
J. Mater. Res.
, Vol.
9
(
9
), pp.
2440
2449
.
20.
Shikama
T.
,
Sakai
Y.
,
Fukutomi
M.
, and
Okada
M.
,
1988
, “
Deposition of TiB2 Films by A Co-sputtering Method
,”
Thin Solid Films
, Vol.
156
, pp.
287
293
.
21.
Sproul
W. D.
,
Rudnik
P. J.
,
Graham
M. E.
, and
Rohde
S. L.
,
1990
, “
High Rate Reaction Sputtering in an Opposed Cathode Closed-field Unbalanced Magnetron Sputtering System
,”
Surface and Coatings Technology
, Vol.
43
, pp.
270
278
.
22.
Xiong, F., Chang, R. P. H., and White, C. W., 1993, “Structure and Properties of a-C:N Films Prepared by Pulsed Excimer Laser Deposition,” MRS Symposium Proceeding, Vol. 280, pp. 587–592.
This content is only available via PDF.
You do not currently have access to this content.