The paper presents a theoretical investigation of the flow field inside a 50 percent eccentricity, synchronously whirling, annular seal. The numerical results are obtained using a specific rotordynamic method based on the perturbed form of the averaged full Navier-Stokes equations. Experimental data for this seal are provided by Morrison et al. (1994, 1995) and Morrison and Winslow (1995). The calculated flow field (stator pressures and shear stresses, distributed forces, velocity and turbulent kinetic energy distributions) is in good qualitative agreement with the measured one. It is evidenced that the particular form of the pressure field is due to a great pressure recovery effect in the exit section. This problem could be used as a test case for annular seal flows, but the high eccentricity is at the limit of a perturbation-based method.

1.
Amoser, M., 1995, “Stro¨mungsfelder und Radialkra¨fte in Labyrinthdichtungen hydraulischer Stro¨mungmaschinen,” dissertation ETH Zu¨rich Nr. 11150.
2.
Arghir, M., Freˆne, J., 1995, “De´termination des caracte´ristiques statiques et dynamiques des joints rainure´s fonctionnant en position centre´e. Rapport final,” Contrat de collaboration, No. 2L3994/EP639, EDF-LMS, Universite´ de Poitiers.
3.
Arghir, M., Amoser, M., Dueymes, E., 1996, “L’influence de joints annulaires lisses sur le comportement dynamique de ligne d’arbres de machines hydrauliques,” accepted for publication in La Houille Blanche in French.
4.
Athavale, M. M., Hendricks, R. C, 1994, “A Small Perturbation CFD Method for Calculation of Seal Rotordynamic Coefficients,” ISROMAC-5, Maui, Hawaii, May.
5.
Athavale, M. M., Przekwas, A. J., Hendricks, R. C, Liang, A., 1994, “SCI-SEAL: A 3D CFD Code for Accurate Analysis of Fluid Flow and Forces in Seals,” Advanced ETO Propulsion Conference, May.
6.
Athavale, M. M., Hendricks, R. C, Steinetz, B. M., 1996, “Numericl Simulation of Flow in a Whirling Annular Seal and Comparison with Experiments,” ISROMAC-6, Honolulu, Hawaii, Feb.
7.
Baldwin, B. S., Lomax, H., 1978, “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA Paper, 78-257, Huntsville, AL.
8.
Baskharone
E. A.
,
Hensel
S. J.
,
1991
, “
A Finite-Element Perturbation Approach to Fluid/Rotor Interaction in Turbomachinery Elements. Part 1: Theory
,”
ASME Journal of Fluids Engineering
, Vol.
113
, Sept., pp.
353
361
.
9.
Childs, D., 1993, Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis, Wiley & Sons, New York.
10.
Dietzen
F. J.
,
Nordmann
R.
,
1987
, “
Calculating Rotordynamic Coefficients of Seals by Finite-Difference Techniques
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
109
, pp.
388
394
.
11.
Launder
B. E.
,
Spalding
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
3
, pp.
269
289
.
12.
Launder
B. E.
,
1989
, “
Second-moment closure: present . . . and future?
Int. J. Heat and Fluid Flow
, Vol.
10
, No.
4
, Dec, pp.
282
300
.
13.
Morrison
G. L.
,
DeOtte
R. E.
,
Thames
H. D.
,
1994
, “
Experimental Study of the Flow Field Inside a Whirling Annular Seal
,”
STLE Tribology Transactions
, Vol.
37
, pp.
425
429
.
14.
Morrison, G. L., Winslow, R. B., Thames, H. D., 1995, “Phase Averaged Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Measurements In a Whirling Annular Seal,” International Gas Turbine and Aeroengine Congress & Exposition, Houston, Texas—June 5–8, 95-GT-101, accepted for publication in the Trans ASME.
15.
Morrison, G. L., Winslow, R. B., 1995, “Forces anti Moments Generated by Pressure and Shear Stresses on the Stator of a Whirling Eccentric Seal,” 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 10-12, San Diego, CA, AIAA 95-2766.
16.
Patankar, S. V., 1980, Numerical Heat Transfer And Fluid Flow, Hemisphere Publishing & McGraw-Hill, B.C.
17.
Przekwas, A. J., Athavale, M. M., 1992, “Development of A CFD Code for Fluid Dynamic Forces In Seals,” Proceedings of the 1992 Seals Flow Code Development Workshop held at NASA Lewis Research Center, Cleveland, Ohio, Aug. 5-6, CP-10124.
18.
Roache
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME Journal of Fluids Engineering
, Vol.
116
, Sept., pp.
405
413
.
19.
Schlichting, H., 1968, Boundary Layer Theory, McGraw-Hill, London.
20.
Staubli, T., 1993, “A Labyrinth Seal—ETHZ Test Case,” presented at Socie´te´ Hydrotechnique de France, October, Paris.
21.
Tam
L. T.
,
Przekwas
A. J.
,
Muzsynska
A.
,
Hendricks
R. C.
,
Braun
M. J.
,
Mullen
R. L.
,
1988
, “
Numerical and Analytical Study of Fluid Dynamic Forces in Seals and Bearings
,”
ASME Journal of Vibration, Acoustics, Stress and Reliability in Design
, Vol.
110
, pp.
315
325
.
22.
Zhu, J., Rodi, W., 1991, “A Low Dispersion and Bounded Convection Schenie,” Computer Methods in Applied Mechanics and Engineering, 92, pp. 87–96.
This content is only available via PDF.
You do not currently have access to this content.