This paper describes an experimental and theoretical investigation of a four-pocket, oil-fed, orifice-compensated hydrostatic bearing including the hybrid effects of journal rotation. The test apparatus incorporates a double-spool-shaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit, for both forward and backward whirling. This configuration yields data that enables determination of the full linear anisotropic rotordynamic model. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Theoretical predictions are made for the same configuration and operating conditions as the test matrix using a finite-difference solver of Reynolds lubrication equation. The computational results agree well with test results, theoretical predictions of stiffness and damping coefficients are typically within thirty percent of the experimental results.

1.
Adams
M. L.
,
1987
, “
Insights into Linearized Rotor Dynamics, Part 2
,”
Journal of Sound and Vibration
, Vol.
112
, pp.
97
110
.
2.
Adams
M. L.
, and
Padovan
J.
,
1981
, “
Insights into Linearized Rotor Dynamics
,”
Journal of Sound and Vibration
, Vol.
76
, pp.
129
142
.
3.
Adams, M. L., Sawicki, J. T., and Capaldi, R. J., 1992, “Experimental Determination of Hydrostatic Journal Bearing Rotordynamic Coefficients,” Proceedings of the IMechE Fifth International Conference on Vibration in Rotating Machinery, pp. 365–374.
4.
Adams, M. L., and Shapiro, W., 1969, “Squeeze Film Characteristics in Flat Hydrostatic Bearings with Incompressible Flow,” presented at the 24th ASLE Annual Meeting, Paper No. 69AM 3C-1.
5.
Artiles, A., Walowit, J., and Shapiro, W., 1982, “Analysis of Hybrid, Fluid-Film Journal Bearings with Turbulence and Inertia Effects,” Advances in Computer Aided Bearing Design, ASME Publication G00220, pp. 25–52.
6.
Braun
M. J.
,
Adams
M. L.
, and
Mullen
R. L.
,
1984
/85
, “
Analysis of a Two-Row Hydrostatic Journal Bearing with Variable Properties, Inertia Effects and Surface Roughness
,”
Israel Journal of Technology
, Vol.
22
, pp.
155
164
.
7.
Braun
M. J.
,
Wheeler
R. L.
, and
Hendricks
R. C.
,
1987
, “
A Fully Coupled Variable Properties Thermohydraulic Model for a Cryogenic Hydrostatic Journal Bearing
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
109
, pp.
405
416
.
8.
Braun
M. J.
,
Zhou
Y. M.
, and
Choy
F. K.
,
1994
, “
Transient Flow Patterns and Pressures Characteristics in a Hydrostatic Pocket
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
139
146
.
9.
Braun
M. J.
,
Choy
F. K.
, and
Zhu
N.
,
1995
, “
Flow Patterns and Dynamic Characteristics of a Lightly Loaded Hydrostatic Pocket of Variable Aspect Ratio and Supply Jet Strength
,”
Tribology Transactions
, Vol.
38
, No.
1
, pp.
128
136
.
10.
Castelli
V.
, and
Shapiro
W.
,
1967
, “
Improved Method for Numerical Solutions of the General Incompressible Fluid Film Lubrication Problem
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
89
, No.
2
, pp.
211
218
.
11.
Davies
P. B.
, and
Leonard
R.
,
1969
, “
The Dynamic Behavior of Multi-Recess Hydrostatic Bearings
,”
Proc. Instn. Mech. Engnrs.
, Vol.
184
, Part 3L, pp.
139
144
.
12.
Ghosh
M. K.
,
1978
, “
Dynamic Characteristics of Multirecess Externally Pressurized Oil Journal Bearing
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
100
, pp.
467
471
.
13.
Ghosh
M. K.
,
Guha
S. K.
, and
Majumdar
B. C.
,
1989
, “
Rotordynamic Coefficients of Multirecess Hybrid Journal Bearings Part I
,”
Wear
, Vol.
129
, pp.
245
259
.
14.
Ghosh
M. K.
, and
Viswanath
N. S.
,
1987
, “
Frequency Dependent Stiffness and Damping Coefficients of Orifice Compensated Multi-Recess Hydrostatic Journal Bearings
,”
Int. J. Mach. Tools Manufact.
, Vol.
27
, No.
3
, pp.
275
287
.
15.
Guha
S. K.
,
Ghosh
M. K.
, and
Majumdar
B. C.
,
1989
, “
Rotordynamic Coefficients of Multirecess Hybrid Journal Bearings Part II: Fluid Inertia Effect
,”
Wear
, Vol.
129
, pp.
261
272
.
16.
Hagg
A. C.
, and
Sankey
G. O.
,
1956
, “
Some Dynamic Properties of Oil-Film Journal Bearings with Reference to the Unbalance Vibration of Rotors
,”
ASME Journal of Applied Mechanics
, Vol.
78
, pp.
302
306
.
17.
Kanki, H., and Kawakami, T., 1987, “Experimental Study on the Static and Dynamic Characteristics of Screw Grooved Seals,” 11th Biennial Conference on Mechanical Vibration and Noise, Rotating Machinery Dynamics, ASME Publication DE-Vol. 2, pp. 273–278.
18.
Franchek
N. M.
, and
Childs
D. W.
,
1994
, “
Experimental Test Results for Four High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearings
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
147
153
.
19.
Kurtin, K. A., Childs, D., San Andres, L., and Hale, K., 1991, “Experimental Versus Theoretical Characteristics of a High-Speed Hybrid (Combination Hydrostatic and Hydrodynamic) Bearing,” STLE/ASME Tribology Conference, ASME Paper No. 91-Trib-35.
20.
Murphy, B. T., Scharrer, J. K., and Sutton, R. F., 1990, “The Rocketdyne Multifunction Tester. Part I: Test Method,” Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, pp. 347–359.
21.
Murphy
B. T.
, and
Wagner
M. N.
,
1991
, “
Measurement of Rotordynamic Coefficients for a Hydrostatic Radial Bearing
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
113
, pp.
518
525
.
22.
Rohde, S. M., and Ezzat, H. A., 1976, “On the Dynamic Behavior of Hybrid Journal Bearings,” ASME JOURNAL OF LUBRICATION TECHNOLOGY, pp. 90–94.
23.
Rowe
W. B.
,
1980
, “
Dynamic and Static Properties of Recessed Hydrostatic Journal Bearings by Small Displacements Analysis
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
102
, pp.
71
79
.
24.
Rowe
W. B.
, and
Chong
F. S.
,
1986
, “
Computation of Dynamic Force Coefficients for Hybrid (Hydrostatic/Hydrodynamic) Journal Bearings by the Finite Disturbance and Perturbation Techniques
,”
TRIBOLOGY Int.
, Vol.
19
, No.
5
, pp.
260
271
.
25.
San Andres
L.
,
1990
a, “
Approximate Analysis of Turbulent Hybrid Bearings. Static and Dynamic Performance for Centered Operation
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
692
698
.
26.
San Andres
L.
,
1990
b, “
Turbulent Hybrid Bearings with Fluid Inertia Effects
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
699
707
.
27.
San Andres
Luis A.
,
1991
, “
Effect of Fluid Compressibility on the Dynamic Response of Hydrostatic Journal Bearings
,”
Wear
, Vol.
146
, pp.
269
283
.
28.
San Andres
Luis A.
,
1992
, “
Analysis of Turbulent Hydrostatic Bearings with a Barotropic Cryogenic Fluid
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
114
, pp.
755
765
.
29.
San Andres, L., 1994, “Analysis of Arbitrary Recess Geometry Hydrostatic Bearings,” Proc. of the 6th NASA Conference on Advanced Earth-to-Orbit Propulsion Technology, Huntsville, AL, NASA CP 3282, Vol. II, pp. 431–441.
30.
Sawicki, J. T., 1992, “Experimental and Theoretical Determination of Hydrostatic/Hybrid Journal Bearing Rotordynamic Coefficients,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
31.
Sternlicht
B.
,
1959
, “
Elastic and Damping Properties of Cylindrical Journal Bearings
,”
ASME Journal of Basic Engineering
, Vol.
81
, pp.
101
108
.
32.
Stodola
A.
,
1925
, “
Kritische Wellensto¨rung Infolge der Nachgiebigkeit des O¨elpolsters im Lager
,” (“Critical Shaft Perturbations as a Result of the Elasticity of the Oil Cushion in the Bearings”)
Schweizerische Bauzeitung
, Vol.
85
, No.
21
, pp.
265
266
.
33.
Taylor
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Phil. Trans. A
, Vol.
223
, pp.
289
289
.
34.
Yang, Z., San Andres, L., and Childs, D., 1994, “Process Liquid Turbulent Flow Hydrostatic Bearings: Analysis and Tests for Rotordynamic Coefficients,” Proceedings of the 4th International IFToMM Rotordynamics Conference, Chicago, pp. 233–242.
This content is only available via PDF.
You do not currently have access to this content.