A thermohydrodynamic analysis, based on computational fluid dynamics (CFD) techniques, that accounts for conduction in the rotating and orbiting shaft of a hydrodynamic bearing is presented. No restrictions apply to the circumferential or axial variation of journal/shaft temperature. Dynamic cavitation effects are also introduced, such that pressures in the cavitation region are predicted rather than set. The model predictions are validated against analytical and published experimental results. For the case of a centrally located synchronous forward circular whirl orbit, it is demonstrated that the journal does not behave as a circumferentially isothermal element and that significant steady temperature differentials across the journal may occur.

1.
Brockwell
K.
,
Kleinbub
D.
, and
Dmochowski
W.
,
1990
, “
Measurement and Calculation of the Dynamic Operating Characteristics of the Five Shoe, Tilting Pad Journal Bearing
,”
STLE Tribology Transactions
, Vol.
33
, pp.
481
492
.
2.
Dowson
D.
,
Hudson
J. D.
,
Hunter
B.
, and
March
C. N.
,
1966–67
a, “
An Experimental Investigation of the Thermal Equilibrium of Steadily Loaded Journal Bearings
,”
Proceedings, Instn Mechanical Engineers
, Vol.
181
, Part 3B, pp.
70
80
.
3.
Dowson
D.
, and
March
C. N.
,
1966–67
b, “
A Thermohydrodynamic Analysis of Journal Bearings
,”
Proceedings, Instn Mechanical Engineers
, Vol.
181
, Part 30, pp.
117
126
.
4.
El-Deihi
M. K. I.
and
Gethin
D. T.
,
1992
, “
A Thermohydrodynamic Analysis of a Twin Axial Groove Groove Bearing Under Different Loading Directions and Comparison with Experiment
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
114
, pp.
304
310
.
5.
Etsion
I.
, and
Ludwig
L. P.
,
1982
, “
Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
104
, pp.
157
163
.
6.
Fillon
M.
,
Bliboud
J-C.
, and
Frene
J.
,
1992
, “
Experimental Study of Tilting-Pad Journal Bearings-Comparison with Theoretical Thermoelastohydrodynamic Results
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
114
, pp.
579
588
.
7.
Han
T.
, and
Paranjpe
R. S.
,
1990
, “
A Finite Volume Analysis of the Thermohydrodynamic Performance of Finite Journal Bearings
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
557
566
.
8.
Jacobson
B. O.
, and
Hamrock
B. J.
,
1983
, “
High-Speed Motion Picture Camera Experiments of Cavitation in Dynamically Loaded Journal Bearings
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
105
, pp.
446
452
.
9.
de Jongh, F. M., and Morton, P. G., 1994, “The Synchronous Instability of a Compressor Rotor due to Bearing Journal Differential Heating,” ASME Int. Gas Turbine and Aeroengine Cong, and Exp., The Hague, Netherlands, Paper 94-GT-35.
10.
Keogh
P. S.
, and
Morton
P. G.
,
1993
, “
Journal Bearing Differential Heating Evaluation with Influence on Rotor Dynamic Behaviour
,”
Proceedings Roy. Soc. Lond.
, Series A, Vol.
441
, pp.
527
548
.
11.
Knight
J. D.
, and
Barrett
L. E.
,
1983
, “
An Approximate Solution Technique for Multilobe Journal Bearings Including Thermal Effects with Comparison to Experiment
,”
ASLE Transactions
, Vol.
26
, pp.
501
508
.
12.
Knight
J. D.
, and
Ghadimi
P.
,
1992
, “
Effects of modified effective length models of the rupture zone on the analysis of a fluid journal bearing
,”
STLE Tribology Transactions
, Vol.
35
, pp.
29
36
.
13.
Knight
J. D.
, and
Niewiarowski
A. J.
,
1990
, “
Effects of two film rupture models on the thermal analysis of journal bearings
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, pp.
183
188
.
14.
Lund
J. W.
, and
Hansen
P. K.
,
1984
, “
An Approximate Analysis of the Temperature Conditions in a Journal Bearing. Part I: Theory
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
106
, pp.
228
236
.
15.
Lund
J. W.
, and
Tonnesen
J.
,
1984
, “
An Approximate Analysis of the Temperature Conditions in a Journal Bearing. Part II: Application
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
106
, pp.
237
245
.
16.
Mitsui
J.
,
1982
, “
A Study of the Lubricant Film Characteristics of Journal Bearings (Part 2, Effects of Various Design Parameters on Thermal Characteristics of Journal Bearings
,”
Bull JSME
, Vol.
25
, No.
210
, pp.
2010
2017
.
17.
Paranjpe, R. S., and Han, T., 1994, “A Transient Thermohydrodynamic Analysis Including Mass Conserving Cavitation for Dynamically Loaded Journal Bearings,” STLE/ASME Tribology Conf., Hawaii, Paper 94-Trib-36.
18.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
19.
Pinkus, O., 1990, Thermal Aspects of Fluid Film Tribology, ASME Press.
20.
San Andres
L.
,
Yang
Z.
, and
Childs
D. W.
,
1993
, “
Thermal Effects in Cryogenic Liquid Annular Seals-Part II: Numerical Solution and Results
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, pp.
277
284
.
21.
Suganami
T.
, and
Szeri
A. Z.
,
1979
, “
A Thermohydrodynamic Analysis of Journal Bearings
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
101
, pp.
21
27
.
22.
Sun
D. C.
,
Brewe
D. E.
, and
Abel
P. B.
,
1993
, “
Simultaneous Pressure Measurement and High-Speed Photography Study of Cavitation in a Dynamically Loaded Journal Bearing
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
115
, pp.
88
95
.
23.
Tonnesen
J.
, and
Hansen
P. K.
,
1981
, “
Some Experiments on the Steady State Characteristics of a Cylindrical Fluid-Film Bearing Considering Thermal Effects
,”
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
103
, pp.
107
114
.
24.
Tucker
P. G.
, and
Keogh
P. S.
,
1995
, “
A Generalised CFD Approach for Journal Bearing Performance Prediction
,”
Proceedings, Instn Mechanical Engineers, Journal of Tribology
, Vol.
209
, Part J, pp.
99
108
.
25.
Van Doormaal
J. P.
, and
Raithby
G. D.
,
1984
, “
Enhancement of the SIMPLE method for predicting incompressible fluid flows
,”
Numerical Heat Transfer
, Vol.
7
, pp.
147
163
.
This content is only available via PDF.
You do not currently have access to this content.