Experiments and finite element simulations are presented pertaining to the effective hardness and the mechanics of indentation and sliding contact on elastic-plastic layered media. Hardness measurements obtained from scratch experiments are presented for thin-film rigid disks with 30 nm carbon overcoats. Reproducible results are obtained for residual scratch depths greater than approximately 8 nm. A simple force balance model is used to calculate the effective hardness of the layered medium. Hardness values for the surface layer are calculated by fitting a relationship between the hardness, scratch geometry, and layer thickness to the experimental data. The experimental results are compared with three-dimensional finite element simulations of a rigid spherical indenter sliding over a half-space with a stiffer and harder surface layer. The finite element results are used to verify the hardness model applied to the experimental data and to provide insight into the observed experimental behavior in the context of the associated elastic-plastic deformation characteristics of the layered medium.

1.
Adler
T. A.
, and
Walters
R. P.
,
1993
, “
Wear and Scratch Hardness of 304 Stainless Steel Investigated with a Single Scratch Test
,”
Wear
, Vol.
162–164
, pp.
713
720
.
2.
Bhattacharya
A. K.
, and
Nix
W. D.
,
1988
, “
Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates
,”
Int. J. Solids Structures
, Vol.
24
, No.
12
, pp.
1287
1298
.
3.
Bhushan
B.
,
Williams
V. S.
, and
Shack
R. V.
,
1988
, “
In-Situ Nanoindentation Hardness Apparatus for Mechanical Characterization of Extremely Thin Films
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
110
, No.
3
, pp.
563
571
.
4.
Brookes
C. A.
,
Green
P.
,
Harrison
P. H.
, and
Moxley
B.
,
1972
, “
Some Observations on Scratch and Indentation Hardness Measurements
,”
J. Phys. D: Appl. Phys.
, Vol.
5
, pp.
1284
1293
.
5.
Challen
J. M.
, and
Oxley
P. L. B.
,
1979
, “
An Explanation of the Different Regimes of Friction and Wear Using Asperity Deformation Models
,”
Wear
, Vol.
53
, pp.
229
243
.
6.
Doerner
M. F.
, and
Nix
W. D.
,
1986
, “
A Method for Interpreting the Data from Depth-sensing Indentation Instruments
,”
J. Mater. Res.
, Vol.
1
, No.
4
, pp.
601
609
.
7.
Duncan, R. N., 1985, “Electroless Nickel: Alternative to Chromium Coatings,” Metal Progress, June 1985, pp. 31–36.
8.
Enke
K.
,
1981
, “
Some New Results on the Fabrication of and the Mechanical, Electrical and Optical Properties of i-Carbon Layers
,”
Thin Solid Films
, Vol.
80
, pp.
227
234
.
9.
Goddard
J.
, and
Wilman
H.
,
1962
, “
A Theory of Friction and Wear During the Abrasion of Metals
,”
Wear
, Vol.
5
, pp.
114
135
.
10.
Hintermann
H. E.
,
1984
, “
Adhesion, Friction and Wear of Thin Hard Coatings
,”
Wear
, Vol.
100
, pp.
381
397
.
11.
Hisakado
T.
,
1970
, “
On the Mechanism of Contact between Solid Surfaces
,”
Bulletin JSME
, Vol.
13
, No.
55
, pp.
129
139
.
12.
Hokkirigawa
K.
, and
Kato
K.
,
1988
, “
An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear
,”
Tribol. Int.
, Vol.
21
, pp.
51
57
.
13.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K., pp. 171–184; 286–292.
14.
Komvopoulos
K.
,
Saka
N.
, and
Suh
N. P.
,
1985
, “
The Mechanism of Friction in Boundary Lubrication
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
107
, No.
4
, pp.
452
462
.
15.
Ko¨ster, E., and Arnoldussen, T. C., 1987, “Recording Media,” Magnetic Recording Volume I: Technology, Mee, C. D., and Daniel, E. D., eds., McGraw-Hill, New York, NY, pp. 98–243.
16.
Kral
E. R.
,
Komvopoulos
K.
, and
Bogy
D. B.
,
1995
a, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results
,”
ASME Journal of Applied Mechanics
, Vol.
62
, No.
1
, pp.
20
28
.
17.
Kral
E. R.
,
Komvopoulos
K.
, and
Bogy
D. B.
,
1995
b, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results
,”
ASME Journal of Applied Mechanics
, Vol.
62
, No.
1
, pp.
29
42
.
18.
Lu
C. J.
,
Bogy
D.
, and
Kaneko
R.
,
1994
, “
Nanoindentation Hardness Tests Using a Point Contact Microscope
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
116
, No.
1
, pp.
175
180
.
19.
Maan
N.
, and
Broese van Groenou
A.
,
1977
, “
Low Speed Scratch Experiments on Steels
,”
Wear
, Vol.
42
, pp.
365
390
.
20.
Pethica
J. B.
,
Hutchings
R.
, and
Oliver
W. C.
,
1983
, “
Hardness Measurement at Penetration Depths as Small as 20 nm
,”
Phil. Mag. A
, Vol.
48
, No.
4
, pp.
593
606
.
21.
Pharr, G. M., 1994, private communication.
22.
Safranek, W. H., ed., 1986, The Properties of Electrodeposited Metals and Alloys, American Electroplaters and Surface Finishers Society, Orlando, FL, pp. 45–97.
23.
Shaw
M. C.
,
1972
, “
A New Theory of Grinding
,”
Mech. Chem. Engg. Trans. I. E. Aust.
, Vol.
MC8
, No.
1
, pp.
73
78
.
24.
Steinmann
P. A.
, and
Hintermann
H. E.
,
1985
, “
Adhesion of TiC and Ti(C, N) Coatings on Steel
,”
J. Vac. Sci. Technol. A
, Vol.
3
, No.
6
, pp.
2394
2400
.
25.
Tsukamoto
Y.
,
Yamaguchi
H.
, and
Yanagisawa
M.
,
1987
, “
Mechanical Properties of Thin Films: Measurements of Ultramicroindentation Hardness, Young’s Modulus and Internal Stress
,”
Thin Solid Films
, Vol.
154
, pp.
171
181
.
26.
Wu, T. W., Burn, R. A., Chen, M. M., and Alexopoulos, P. S., 1989, “Micro-indentation and Micro-scratch Tests on Sub-micron Carbon Films,” Thin Films: Stresses and Mechanical Properties, Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A., eds., Proc. Mater. Res. Soc., Vol. 130, pp. 117–122.
27.
Wu
T. W.
,
1991
, “
Microscratch and Load Relaxation Tests for Ultra-thin Films
,”
J. Mater. Res.
, Vol.
6
, No.
2
, pp.
407
426
.
28.
Yamashita, T., 1990, “Wear Resistant Overcoat Materials, for Thin Film Media,” Thin Film Materials for Information Storage, Stanford University workshop, Feb. 2, Stanford, CA.
This content is only available via PDF.
You do not currently have access to this content.