A Mroz image point, two surface, nonlinear-kinematic-hardening-plastic (MNKP) representation of bearing steel is inserted into a finite element model of 2-dimensional, line contact for pure rolling. The calculations are compared with previous results for the same contact pressure derived for elastic-linear-kinematic-hardening-plastic (ELKP) behavior. The residual stress, deformation, and the connection between continuing cyclic deformation, etching bands, and cracks are analyzed. Unlike the ELKP constitutive properties, the MNKP behavior displays a distinct transient region which results in higher residual stresses.

1.
Armstrong, P. J., and Frederick, C. O., 1966, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” C.E.G.B. Report RD/B/N 731.
2.
Bhargava, V., Hahn, G. T., Ham, G., Kulkarni, S., and Rubin, C. A., 1987, “Influence of Kinematic Hardening on Rolling Contact Deformation,” Contact Mechanics and Wear on Rail/Wheel Systems II, G. Caldwell, H. Ghonem, and J. Kalousek, eds. Univ. of Waterloo Press, pp. 133–146.
3.
Bhargava, V., Hahn, G. T., and Rubin, C. A., 1986, “A Finite Element Approach for Repeated Elastic-Plastic Rolling Contact,” Proc. Int. Conf. on Computational Mechanics, Tokyo, Japan, Chapter II, pp. 177–186.
4.
Bhargava
V.
,
Hahn
G. T.
, and
Rubin
C. A.
,
1985
a, “
An Elastic-Plastic Finite Element Model of Rolling Contact, Part 1: Analysis of Single Contacts
,”
ASME Journal of Applied Mechanics
, Vol.
52
, pp.
67
74
.
5.
Bhargava
V.
,
Hahn
G. T.
, and
Rubin
C. A.
,
1985
b, “
An Elastic-Plastic Finite Element Model of Rolling Contact, Part 2: Analysis of Repeated Contacts
,”
ASME Journal of Applied Mechanics
, Vol.
52
, pp.
75
82
.
6.
Bhargava
V.
,
Hahn
G. T.
, and
Rubin
C. A.
,
1988
, “
Analysis of Rolling Contact with Kinematic Hardening for Rail Steel Properties
,”
Wear
, Vol.
122
, pp.
267
283
.
7.
Bhargava
V.
,
Hahn
G. T.
, and
Rubin
C. A.
,
1990
, “
Rolling Contact Deformation, Etching Effects and Failure of High Strength Bearing Steel
,”
Met. Trans. A
, Vol.
21
, No.
7
, pp.
1921
1931
.
8.
Bowers, A. F., 1987, The Influence of Strain Hardening on the Cumulative Plastic Deformation Caused by Repeated Rolling and Sliding Contact, University of Cambridge, Technical Report No. CUED/C-Mech/TR.39.
9.
Chaboche
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plasticity
, Vol.
2
, pp.
149
188
.
10.
Hahn
G. T.
,
Bhargava
V.
,
Chen
Q.
, and
Kim
K. Y.
,
1990
a, “
The Cyclic Stress-Strain Properties, Hysteresis Loop Shape and Kinematic Hardening of Two High Strength Bearing Steels
,”
Met. Trans A.
, Vol.
21A
, pp.
653
664
.
11.
Hahn
G. T.
,
Bhargava
V.
,
Rubin
C. A.
,
Chen
Q.
, and
Kim
K.
,
1987
, “
Analysis of Rolling Contact Residual Stresses and Cyclic Plastic Deformation of SAE 52100 Steel Ball Bearings
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
109
, pp.
618
626
.
12.
Hahn, G. T., Rubin, C. A., Bhargava, V., Kulkarni, S., and Bastias, P., 1990b, “Progress in Analyzing the Elasto-Plastic Rolling and Sliding Contact of Bearing Steel,” Proceedings of Japan International Tribology Conference, Nagoya, Japan, Vol. I, pp. 575–580.
13.
Ham, G. L., 1986, “Finite Element Analysis of Repeated Two Dimensional Rolling-Sliding Contact,” M.S. thesis, Vanderbilt University, Nashville, TN.
14.
Ham
G. L.
,
Rubin
C. A.
,
Bhargava
V.
, and
Hahn
G. T.
,
1989
, “
Finite Element Analysis of the Influence of Kinematic Hardening in Two Dimensional, Repeated, Rolling-Sliding Contact
,”
Trans. STLE
, Vol.
32
, pp.
311
316
.
15.
Howell, M., 1991, “Finite Element Analysis of Repeated Pure Rolling Contact for Non-Linear Kinematic Hardening Behavior of Bearing Steel,” M.S. thesis, Vanderbilt University, Nashville, TN.
16.
Johnson, K. L., and Jefferis, J. A., 1963, “Plastic Flow and Residual Stresses in Rolling and Sliding Contact,” Proc. Symp. on Fatigue in Rolling Contact, London.
17.
Kim, K. Y., 1987, “Cyclic Flow Properties of a 1050 Steel and the Effect of Strain Rate,” M.S. thesis, Vanderbilt University, Nashville, TN.
18.
Kulkarni
S. M.
,
Hahn
G. T.
,
Rubin
C. A.
, and
Bhargava
V.
,
1991
, “
Elasto-Plastic Finite Element Analysis of Three-Dimensional Pure Rolling Contact Above the Shakedown Limit
,”
ASME Journal of Applied Mechanics
, Vol.
58
, pp.
347
353
.
19.
Kulkarni
S. M.
,
Hahn
G. T.
,
Rubin
C. A.
, and
Bhargava
V.
,
1990
, “
Elasto-Plastic Finite Element Analysis of Three-Dimensional Pure Rolling Contact at the Shakedown Limit
,”
ASME Journal of Applied Mechanics
, Vol.
57
, pp.
57
65
.
20.
Kulkarni, S. M., Rubin, C. A., Hahn, G. T., and Bhargava, V., 1988, “Elasto-Plastic Finite Element Analysis of Three Dimensional Pure Rolling Contact above Shakedown,” ICES-88 Conference, Atlanta, GA.
21.
Kumar
A. M.
,
Hahn
G. T.
,
Bhargava
V.
, and
Rubin
C. A.
,
1989
, “
Elasto-Plastic Finite Element Analysis of Two-Dimensional Rolling and Sliding Contact Deformation of Bearing Steel
,”
ASME JOURNAL OF TRIBOLOGY
, Vol.
111
, pp.
309
314
.
22.
Kumar, A. M., 1989, “Analysis of Sub-surface Crack Initiation under Rolling Contact,” Ph.D. dissertation, Vanderbilt University.
23.
Li, Q., 1989, “Analysis of Rolling Contact Residual Stresses and Plastic Deformation in 1045 Steel Disks,” M.S. thesis, Vanderbilt University, Nashville, TN.
24.
McDowell, D. L., 1987, “A More Realistic Model Of Nonlinear Material Response: Application To Elastic-Plastic Rolling Contact,” Contact Mechanics and Wear on Rail/Wheel Systems II, G. Gladwell, H. Ghonem, and J. Kalousek, eds., University of Waterloo Press, pp. 133–146.
25.
McDowell
D. L.
,
1985
, “
A Two Surface Theory for Non-Proportional Cyclic Plasticity, Part 1: Development of Appropriate Equations
,”
ASME Journal of Applied Mechanics
, Vol.
52
, pp.
298
302
.
26.
McDowell
D. L.
,
1985
, “
A Two Surface Theory for Non-Proportional Cyclic Plasticity, Part 2: Comparison of Theory with Experiments
,”
ASME Journal of Applied Mechanics
, Vol.
52
, pp.
303
308
.
27.
Merwin
L. E.
, and
Johnson
K. L.
,
1963
, “
An Analysis of Plastic Deformation in Rolling Contact
,”
Proc. Inst. Mech. Engrs.
, Vol.
177
, pp.
676
685
.
28.
Muro
H.
,
Tsushima
N.
, and
Nunome
K.
,
1973
, “
Failure Analysis of Rolling Bearings by X-Ray Measurement of Residual Stress
,”
Wear
, Vol.
25
, pp.
345
356
.
29.
Prager
W.
,
1956
, “
A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids
,”
ASME Journal of Applied Mechanics
, Vol.
23
, pp.
493
496
.
30.
Teirlink
D.
,
Zok
F.
,
Embury
J. D.
, and
Ashby
F.
,
1988
, “
Fracture Mechanism Maps in Stress Space
,”
Acta Metallurgica
, Vol.
36
, No.
5
, pp.
1213
1228
.
31.
Van Dang
K.
, and
Maitournam
M. H.
,
1993
, “
Steady-State Flow in Classical Elastoplasticity: Applications to Repeated Rolling and Sliding Contact
,”
J. Mech. Phys. Solids
, Vol.
41
, No.
11
, pp.
1691
1710
.
32.
Ziegler
H.
,
1959
, “
A Modification of Prager’s Hardening Rule
,”
Quar. Appl. Math.
, Vol.
17
, pp.
1255
1265
.
33.
Zwerlein, O., and Schlicht, H., 1982, ASTM STP 771, J. J. C. Hoo, ed., pp. 358–379.
This content is only available via PDF.
You do not currently have access to this content.