Ultra-thin gas squeeze film characteristics are analyzed by extending Pan’s asymptotic theory for infinite squeeze number to the molecular gas film lubrication equation which was derived from the linearized Boltzmann equation and is valid for arbitrary Knudsen numbers. The generalized asymptotic method is shown to solve the boundary value equation which contains the flow rate coefficient as a function of the product of pressure P and film thickness H. Numerical results are obtained for a circular squeeze film. The PH ratio and the load carrying capacity ratio to those of continuum flow both decrease when the average film thickness is less than several microns because of molecular gas effects.

1.
Burgdorfer
A.
,
1959
,
ASME Journal of Basic Engineering
, Vol.
81
, p.
94
94
.
2.
Cercignani
C.
, and
Daneri
A.
,
1963
,
J. Appl. Phys.
, Vol.
34
, p.
3509
3509
.
3.
Fukui
S.
, and
Kaneko
R.
,
1988
a,
ASME JOURNAL OF TRIBOLOGY
, Vol.
110
, p.
253
253
.
4.
Fukui
S.
, and
Kaneko
R.
,
1988
b,
ASME JOURNAL OF TRIBOLOGY
, Vol.
110
, p.
144
144
.
5.
Fukui
S.
, and
Kaneko
R.
,
1990
,
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, p.
78
78
.
6.
Hayashi
T.
,
Fukui
S.
,
Ohkubo
T.
, and
Kaneko
R.
,
1990
,
ASME JOURNAL OF TRIBOLOGY
, Vol.
112
, p.
111
111
.
7.
Maeno
T.
, and
Bogy
D. B.
,
1992
,
IEEE Trans. Ultrason. Ferroelec., Frec., Contr.
, Vol.
UFFC-39
, p.
675
675
.
8.
Ono
K.
,
1975
,
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
97
, p.
250
250
.
9.
Pan
C. H. T.
,
1967
,
ASME JOURNAL OF LUBRICATION TECHNOLOGY
, Vol.
89
, p.
245
245
.
10.
Pan, C. H. T., and Broussard, Jr., P. H., 1972, MTI Gas Bearing Design Manual, D. F. Wilcock, (ed.), Ch. 7, Mechanical Technology, Inc., Latham, NY.
11.
Salbu
E. O. J.
,
1964
,
ASME Journal of Basic Engineering
, Vol.
86
, p.
355
355
.
12.
Zhang, L., Dan Cho, Shiraishi, H., and Trimmer, W., 1992, DSC. Vol. 40, Micromechanical Systems ASME, p. 149.
This content is only available via PDF.
You do not currently have access to this content.