A complete non-Newtonian elastohydrodynamic lubrication solution for multilayered elastic solids is introduced in this paper. A modified form for the Reynolds equation was derived by incorporating the circular non-Newtonian fluid model associated with a limiting shear strength directly into the momentum equations that govern the instantaneous equilibrium of a fluid element inside the lubricated conjunction. The modified Reynolds equation, the elasticity equations of multilayered elastic half-space, the lubricant pressure-viscosity equation, the lubricant pressure-density equation, and the load equilibrium equation were solved simultaneously by using the system approach. The effects of the surface coating on pressure profiles, film shapes, and surface shear stress profiles are shown. Furthermore, the effects of coating thickness on the minimum film thickness and on the coefficient of friction are presented for different coating materials. The results show that for hard coatings non-Newtonian fluid effects on the pressure profiles and film shapes are significant because of the increase in the contact pressure.

This content is only available via PDF.
You do not currently have access to this content.