This paper investigates the stiffness of a magnetic bearing that is subjected to the combined action of static and dynamic loads. Since their sum cannot exceed the saturation load, a large static load will imply that the bearing can carry only a small dynamic load. This smaller dynamic load together with the practical vibration amplitude define a practical upper bound to the dynamic stiffness. This paper also presents approximate design formulas and curves for this stiffness capacity as a function of the ratio of dynamic and static loads. In addition, it indicates that vibrations larger than a certain gap fraction can destabilize the magnetic bearing. This gap fraction, called the critical gap fraction, depends on the dynamic and static load ratio. For example, if the dynamic load is half of the static load, the use of more than 25 percent of gap can destabilize the bearing.

This content is only available via PDF.
You do not currently have access to this content.