The experimental determination of friction-factors for the flow of air in a narrow channel lined with various honeycomb geometries has been carried out. Test results show that, generally, the friction-factor is nearly constant or slightly decreases as the Reynolds number increases, a characteristic common to turbulent flow in pipes. However, in some test geometries this trend is remarkably different. The friction factor dramatically drops and then rises as the Reynolds number increases. This phenomenon can be characterized as a “friction-factor jump.” Further investigations of the acoustic spectrum and friction-factor measurements for a broad range of Reynolds numbers indicate that the “friction-factor jump” phenomenon is accompanied by an onset of a normal mode resonance excited coherent flow fluctuation structure, which occurs at Reynolds number of the order of 104. The purpose of this paper is not to present the friction-factor data but to explain the friction-factor-jump phenomenon and friction-factor characteristics.

This content is only available via PDF.
You do not currently have access to this content.