A novel analysis for the dynamic force response of a squeeze film damper with a central feeding groove considers the dynamic flow interaction between the squeeze film lands and the feeding groove. For small amplitude centered motions and based on the short bearing model, corrected values for the damping and inertia force coefficients are determined. Correlations with existing experimental evidence is excellent. Analytical results show that the grooved-damper behaves at low frequencies as a single land damper. Dynamic force coefficients are determined to be frequency dependent. Analytical predictions show that the combined action of fluid inertia and groove volume—liquid compressibility affects the force coefficients for dynamic excitation at large frequencies.

This content is only available via PDF.
You do not currently have access to this content.