In this paper, stability of a journal bearing is numerically predicted when an unidirectional periodic external load is applied. The analysis is performed using a cavitation algorithm, which mimics the JFO theory by accounting for the mass balance through the complete bearing. Hence, the history of the film is taken into consideration. The loading pattern is taken to be sinusoidal and the frequency of the load cycle is varied. The results are compared with the predictions using Reynolds boundary conditions for both film rupture and reformation. With such comparisons, the need for accurately predicting the cavitation regions for complex loading patterns is clearly demonstrated. For a particular frequency of loading, the effects of mass, amplitude of load vibration and frequency of journal speed are also investigated. The journal trajectories, transient variations in fluid film forces, net surface velocity and minimum film thickness and pressure profiles are also presented.

This content is only available via PDF.
You do not currently have access to this content.