A thermal Reynolds-Eyring equation is derived for elastohydrodynamic lubrication of line contacts. A control volume approach is used to analyze the inlet region where back-flow occurs. Numerical results are obtained and used to develop a formula for the thermal and non-Newtonian (Ree-Eyring) film thickness reduction factor. Results for maximum temperatures and traction coefficients are also presented. The pressure dependence of lubricant thermal conductivity is found to significantly affect the maximum lubricant temperature.

This content is only available via PDF.
You do not currently have access to this content.