This paper proposes self-loading flying head slider mechanisms to be used for information storage on magnetic disk media under noncontact start/stop mode conditions. The mechanisms consist of a zero-load negative pressure air-lubricated slider bearing, a slider suspension mechanism, and a twin-structure piezoelectric actuator as the head loading mechanism. Experimental research was carried out on fundamental flying characteristics for the slider. The dynamics of a self-loading/unloading negative pressure air-lubricated slider bearing were successfully studied in detail with a laser Doppler vibrometer. No intermittent contact between head and disk was observed in either the self-load or unload cases. A theoretical study on the self-loading phenomenon was carried out, and its conclusions were in good agreement with the experimental results. This suggests the feasibility of achieving a high head/disk interface reliability and, in particular, of overcoming problems regarding stiction and tribology between head and disk.

This content is only available via PDF.
You do not currently have access to this content.