A set of computational results of the point contact EHL problem under heavily loaded condition is presented in this paper, and the numerical scheme for the inverse solution of the Reynolds Equation is developed. By using a deformation matrix to calculate the local elastic deformation and its inverse matrix to modify the pressure distribution, both the convergence and the stability of the numerical method are satisfactory. The examples of calculation adopted have been extended from Hamrock and Dowson’s cases into the operating region of heavy load. The results obtained have shown the effects of speed, load, and choice of materials on the film thickness, and have proved Hamrock and Dowson’s formulae for estimating film thicknesses to be accurate under heavily loaded condition.

This content is only available via PDF.
You do not currently have access to this content.