Several cases of cylindrical bearings lubricated with ferrofluid are examined by means of a finite-difference numerical procedure. The subregion of cavitation is determined by imposing mass conservation across the “rupture” and “reformation” boundaries of the complete film. The examined cases refer to bearings confined by sealing rings formed by the lubricant itself, for which there is no need of external supply. In each case the most significant parameters are calculated and it is possible to see that the use of these bearings is favorable when speeds are low, clearances large, and loads light, because in such conditions the magnetic effects are comparable with the pure hydrodynamic ones and the load capacity results appreciably higher.

This content is only available via PDF.
You do not currently have access to this content.