This paper describes a novel model for the prediction of fatigue life in rolling bearings. Central to this model is the postulation of a statistical relationship between the probability of survival, the fatigue life, and a stress-related fatigue criterion level above a fatigue limit for an elementary volume of material in the bearing. Using this concept, the stress volume to fatigue and the fatigue life of the bearing can be calculated for different loads, material and operating conditions. Comparisons between experimentally obtained rolling bearing fatigue lives and lives predicted using this theory indicate its ability to account for phenomena hitherto excluded from fatigue life predictions. Furthermore, comparisons between experimentally obtained fatigue lives for other specimens used in structural fatigue tests and fatigue lives predicted using the new model show good agreement.

This content is only available via PDF.
You do not currently have access to this content.