In this paper a full numerical solution for the thermoelastohydrodynamic problem in elliptical contacts is presented, and the method of computation is also described. The film pressure, thickness, and film shape, the three dimensional temperature distribution within both the film and the bounding solids, as well as the coefficients of the sliding and rolling frictions have all been determined for different rolling velocities and slide-roll ratios. The results obtained indicate the film temperature increases as the rolling velocity or slide-roll ratio increases. The effects of thermal action on the pressure distribution, the film shape and thickness, and the friction factors are also given. The problem studied in this paper is steady-state, the lubricant is assumed to be Newtonian.

This content is only available via PDF.
You do not currently have access to this content.