The momentum equations are written for viscous fluids exhibiting magnetic stresses. The velocity profiles are deduced; then from continuity, a pressure differential equation, equivalent to Reynolds equation is obtained. This equation is discussed with emphasis on the case when magnetic stresses derive from a potential, also when the pyromagnetic coefficient vanishes. The boundary conditions for lubrication problems are then formulated. In particular, short bearings with ferromagnetic lubricants are considered. A numerical example yields the pressure diagrams at low and moderate eccentricity ratios and for different speeds. In conclusion, it is shown that ferromagnetic lubricants may improve substantially the performance of bearings operating under low loads and/or at low speeds. However, a correct variation of the magnetic field, toward the center of the lubricated area, is required. Under such conditions, the extent of the active area of the film is increased and bearing stiffness and stability are improved.

This content is only available via PDF.
You do not currently have access to this content.