The paper describes a numerical procedure for solving the point-contact elastohydrodynamic lubrication problem under isothermal conditions at moderate loads. Results are presented showing the shape of the film and variation of hydrodynamic pressure. Analysis of results for a range of operating conditions gives the following approximate formulas for minimum and central film thickness, repsectively: Hm = 1.9 M−0.17 L0.34 and Ho = 1.7 M−0.026 L0.40 where H, M, and L are the Moes and Bosma nondimensional groups. In common with earlier solutions based upon the forward-iterative method the solution breaks down under moderately heavily loaded conditions. Ways of extending the solution to heavier loads using the authors’ inverse solution of Reynolds’ equation under point-contact elastohydrodynamic conditions are discussed.

This content is only available via PDF.
You do not currently have access to this content.