Squeeze effects in a liquid lubricated radial face seal are analyzed. The analysis considers face misalignment with both axial and angular vibrations of the primary seal ring. Translational, rotational, and cross-coupled damping coefficients of the fluid film are derived analytically from a solution of the Reynolds equation utilizing the narrow seal approximation. Results are given for a wide range of practical radius ratios. At each radius ratio, the complete range of angular misalignment—from parallel faces to touch down—is covered. It is shown that squeeze effects in face seals are usually larger than the more familiar hydrodynamic effects. These effects play an important role in the seal’s mechanism of operation and therefore have to be considered in any realistic seal model.

This content is only available via PDF.
You do not currently have access to this content.