Abstract

This study investigated the effects of various fire retardants including Firetex®, phosphoric acid, and nanoboron nitride on the thermal and morphological properties of bacterial cellulose (BC) sheets. Hestrin and Schramm medium was inoculated with Gluconacetobacter hansenii and the medium with the bacteria was incubated for 14 days. The obtained BC sheets were freeze-dried and then the dried sheets were immersed with Firetex®, phosohoric acid, and nanoboron nitride for a day. The sheets were once again freeze-dried and weight percent gain (WPG) of the sheets was calculated by using wet and dried weights. The morphological characterization, thermal properties, and structural changes of the obtained sheets were also investigated with scanning electron microscopy (SEM), thermogravimetric analysis, and Fourier-transform infrared spectroscopy, respectively. The weight percent gain was found to increase 31% for the samples with boron nitride and 1040% for the samples with phosphoric acid after the impregnation. The thermogravimetric analysis showed that the impregnation improved the thermal stability of the BC films. The sheets with nanoboron nitride exhibited the best thermal stability, whereas the sheets with Firetex were determined to have the worst thermal stability. The Fourier-transform infrared spectroscopy showed some changes in the structural properties of the all BC sheets with fire retardants. As a result, it can be said that nanoboron nitride at low temperatures (25–250 °C) and Firetex and phosphoric acid at higher temperatures (600–900 °C) showed better thermal stability.

References

1.
Huang
,
Y.
,
Zhu
,
C.
,
Yang
,
J.
,
Nie
,
Y.
,
Chen
,
C.
, and
Sun
,
D.
,
2014
, “
Recent Advances in Bacterial Cellulose
,”
Cellulose
,
21
(
1
), pp.
1
30
. 10.1007/s10570-013-0088-z
2.
Gallegos
,
A. M. A.
,
Carrera
,
S. H.
,
Parra
,
R.
,
Keshavarz
,
T.
, and
Iqbal
,
H. M.
,
2016
, “
Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products—A Review
,”
BioResources
,
11
(
5
), pp.
5641
5655
. 10.15376/biores.11.2.Gallegos
3.
Jang
,
W. D.
,
Hwang
,
J. H.
,
Kim
,
H. U.
,
Ryu
,
J. Y.
, and
Lee
,
S. Y.
,
2017
, “
Bacterial Cellulose as an Example Product for Sustainable Production and Consumption
,”
Microb. Biotechnol.
,
10
(
5
), pp.
1181
1185
. 10.1111/1751-7915.12744
4.
Shah
,
N.
,
Ul-Islam
,
M.
,
Khattak
,
W. A.
, and
Park
,
J. K.
,
2013
, “
Overview of Bacterial Cellulose Composites: A Multipurpose Advanced Material
,”
Carbohydr. Polym.
,
98
(
2
), pp.
1585
1598
. 10.1016/j.carbpol.2013.08.018
5.
Ul-Islam
,
M.
,
Khan
,
S.
,
Ullah
,
M. W.
, and
Park
,
J. K.
,
2015
, “
Bacterial Cellulose Composites: Synthetic Strategies and Multiple Applications in Bio-Medical and Electro-Conductive Fields
,”
Biotechnol. J.
,
10
(
12
), pp.
1847
1861
. 10.1002/biot.201500106
6.
de Olyveira
,
G. M.
,
Costa
,
L. M. M.
,
Riccardi
,
C.
,
Santos
,
M. L.
,
Daltro
,
P. B.
,
Basmaji
,
P.
,
de Cerqueira Daltro
,
G.
, and
Guastaldi
,
A. C.
,
2016
, “Bacterial Cellulose for Advanced Medical Materials,”
Nanobiomaterials in Soft Tissue Engineering
,
A. M.
Grumezescu
, ed.,
William Andrew Publishing
,
Norwich, NY
, pp.
57
82
.
7.
Moniri
,
M.
,
Boroumand Moghaddam
,
A.
,
Azizi
,
S.
,
Abdul Rahim
,
R.
,
Bin Ariff
,
A.
,
Zuhainis Saad
,
W.
,
Navaderi
,
M.
, and
Mohamad
,
R.
,
2017
, “
Production and Status of Bacterial Cellulose in Biomedical Engineering
,”
Nanomaterials
,
7
(
9
), pp.
257
282
. 10.3390/nano7090257
8.
Ashjaran
,
A.
,
Yazdanshenas
,
M. E.
,
Rashidi
,
A.
,
Khajavi
,
R.
, and
Rezaee
,
A.
,
2013
, “
A Overview of Bio Nanofabric From Bacterial Cellulose
,”
J. Text. Inst.
,
104
(
2
), pp.
121
131
. 10.1080/00405000.2012.703796
9.
Xiang
,
Z.
,
Jin
,
X.
,
Liu
,
Q.
,
Chen
,
Y.
,
Li
,
J.
, and
Lu
,
F.
,
2017
, “
The Reinforcement Mechanism of Bacterial Cellulose on Paper Made From Woody and Nonwoody Fiber Sources
,”
Cellulose
,
24
(
11
), pp.
5147
5156
. 10.1007/s10570-017-1468-6
10.
Skočaj
,
M.
,
2019
, “
Bacterial Nanocellulose in Papermaking
,”
Cellulose
,
26
(
11
), pp.
6477
6488
. 10.1007/s10570-019-02566-y
11.
Czaja
,
W.
,
Romanovicz
,
D.
, and
Brown
,
R. M.
,
2004
, “
Structural Investigation of Microbial Cellulose Produced in Stationary and Agitated Culture
,”
Cellulose
,
11
(
3–4
), pp.
403
411
. 10.1023/B:CELL.0000046412.11983.61
12.
Chanliaud
,
E.
,
Burrows
,
K. M.
,
Jeronimidis
,
G.
, and
Gidley
,
M. J.
,
2002
, “
Mechanical Properties of Primary Plant Cell Wall Analogues
,”
Planta
,
215
(
6
), pp.
989
996
. 10.1007/s00425-002-0783-8
13.
Lee
,
K. Y.
,
Quero
,
F.
,
Blaker
,
J. J.
,
Hill
,
C. A.
,
Eichhorn
,
S. J.
, and
Bismarck
,
A.
,
2011
, “
Surface Only Modification of Bacterial Cellulose Nanofibres With Organic Acids
,”
Cellulose
,
18
(
3
), pp.
595
605
. 10.1007/s10570-011-9525-z
14.
Wang
,
D. Y.
,
2016
,
Novel Fire Retardant Polymers and Composite Materials
,
Elsevier
,
Amsterdam
.
15.
Carosio
,
F.
,
Kochumalayil
,
J.
,
Cuttica
,
F.
,
Camino
,
G.
, and
Berglund
,
L.
,
2015
, “
Oriented Clay Nanopaper From Biobased Components—Mechanisms for Superior Fire Protection Properties
,”
ACS Appl. Mater. Interfaces
,
7
(
10
), pp.
5847
5856
. 10.1021/am509058h
16.
Farooq
,
M.
,
Sipponen
,
M. H.
,
Seppälä
,
A.
, and
Österberg
,
M.
,
2018
, “
Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate
,”
ACS Appl. Mater. Interfaces
,
10
(
32
), pp.
27407
27415
. 10.1021/acsami.8b04376
17.
Basta
,
A. H.
, and
El-Saied
,
H.
,
2009
, “
Performance of Improved Bacterial Cellulose Application in the Production of Functional Paper
,”
J. Appl. Microbiol.
,
107
(
6
), pp.
2098
2107
. 10.1111/j.1365-2672.2009.04467.x
18.
Wicklein
,
B.
,
Kocjan
,
A.
,
Salazar-Alvarez
,
G.
,
Carosio
,
F.
,
Camino
,
G.
,
Antonietti
,
M.
, and
Bergström
,
L.
,
2015
, “
Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide
,”
Nat. Nanotechnol.
,
10
(
3
), pp.
277
283
. 10.1038/nnano.2014.248
19.
Hestrin
,
S.
, and
Schramm
,
M.
,
1954
, “
Synthesis of Cellulose by Acetobacter xylinum: Preparation of Freeze Dried Cells Capable of Polymerizing Glucose to Cellulose
,”
Biochem. J.
,
58
(
2
), pp.
345
352
. 10.1042/bj0580345
20.
Marsh
,
K. L.
,
Souliman
,
M.
, and
Kaner
,
R. B.
,
2015
, “
Co-solvent Exfoliation and Suspension of Hexagonal Boron Nitride
,”
Chem. Commun.
,
51
(
1
), pp.
187
190
. 10.1039/C4CC07324J
21.
Robert
,
T. P.
, and
Chaitanya
,
K. N.
,
1990
, “
Synthetic Routes to Boron Nitride
,”
Chem. Rev.
,
90
(
1
), pp.
73
91
. 10.1021/cr00099a004
22.
Rudolph
,
S.
,
1994
, “
Boron Nitride (BN)
,”
Am. Ceram. Soc. Bull.
,
73
(
6
), pp.
89
90
.
23.
Kesik
,
H. I.
,
Aydoğan
,
H.
,
Çagatay
,
K.
,
Ozkan
,
O. E.
, and
Maraz
,
E.
,
2015
, “
Fire Properties of Scots Pine Impregnated With FIRETEX
,”
International Conference on Environmental Science and Technology
,
Sarajevo, Bosnia and Herzegovina
,
Sept. 9–13
, pp.
1
7
.
24.
Daniel
,
J. R.
,
1985
,
Encyclopedia of Polymer Science and Engineering
, 2nd ed.,
John Wiley
,
New York
.
25.
Pandey
,
K. K.
,
2005
, “
A Note on the Influence of Extractives on the Photo-Discoloration and Photo-Degradation of Wood
,”
Polym. Degrad. Stab.
,
87
(
2
), pp.
375
379
. 10.1016/j.polymdegradstab.2004.09.007
26.
Yilgor
,
N.
,
Dogu
,
D.
,
Moore
,
R.
,
Terzi
,
E.
, and
Kartal
,
S. N.
,
2013
, “
Evaluation of Fungal Deterioration in Liquidambar Orientalis Mill. Heartwood by FT-IR and Light Microscopy
,”
BioResources
,
8
(
2
), pp.
2805
2826
.
27.
Liu
,
M.
,
Zhong
,
H.
,
Ma
,
E.
, and
Liu
,
R.
,
2018
, “
Resistance to Fungal Decay of Paraffin Wax Emulsion/Copper Azole Compound System Treated Wood
,”
Int. Biodeterior. Biodegrad.
,
129
, pp.
61
66
. 10.1016/j.ibiod.2018.01.005
28.
Tang
,
C.
,
Bando
,
Y.
,
Huang
,
Y.
,
Zhi
,
C.
, and
Golberg
,
D.
,
2008
, “
Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles
,”
Adv. Funct. Mater.
,
18
(
22
), pp.
3653
3661
. 10.1002/adfm.200800493
29.
Can
,
A.
, and
Sivrikaya
,
H.
,
2019
, “
Surface Characterization of Wood Treated With Boron Compounds Combined With Water Repellents
,”
Color Res. Appl.
,
44
(
3
), pp.
462
472
. 10.1002/col.22357
You do not currently have access to this content.