In this paper, a ferrofluid-based cooling technique is proposed for solar photovoltaic (PV) systems, where ferrofluid flow can be easily altered by the application of an external magnetic field leading to enhanced heat transfer from the hot surface of PV systems. The effect of both constant and alternating magnetic field on ferrofluid flow through a minichannel is explored numerically in the present work. A detailed parametric study is performed to investigate the effect of actuation frequencies of alternating magnetic field (0.5–20 Hz) and Reynolds numbers (Re = 24, 60, and 100) on heat transfer characteristics of ferrofluid. An overall enhancement of 17.41% is observed for heat transfer of ferrofluid in the presence of magnetic field compared to the base case of no magnetic field. For the case of alternating magnetic field, a critical actuation frequency is observed for each Reynolds number above which heat transfer is observed to decrease. The enhancement or decrease in heat transfer of ferrofluid is found to depend on several factors such as actuation frequency of alternating magnetic field, Reynolds numbers of ferrofluid flow, and formation/dispersion of stagnant layers of ferrofluid at the magnet location. Preliminary visualization of ferrofluid flow is also carried out to provide a qualitative insight to the nature of transportation of ferrofluid in the presence of an alternating magnetic field.

References

1.
Kalogirou
,
S. A.
, and
Tripanagnostopoulos
,
Y.
,
2006
, “
Hybrid PV/T Solar Systems for Domestic Hot Water and Electricity Production
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
3368
3382
.
2.
An
,
W.
,
Wu
,
J.
,
Zhu
,
T.
, and
Zhu
,
Q.
,
2016
, “
Experimental Investigation of a Concentrating PV/T Collector With Cu9S5 Nanofluid Spectral Splitting Filter
,”
Appl. Energy
,
184
, pp.
197
206
.
3.
Khanjari
,
Y.
,
Pourfayaz
,
F.
, and
Kasaeian
,
A. B.
,
2016
, “
Numerical Investigation on Using of Nanofluid in a Water-Cooled Photovoltaic Thermal System
,”
Energy Convers. Manage.
,
122
, pp.
263
78
.
4.
Radwan
,
A.
,
Ahmed
,
M.
, and
Ookawara
,
S.
,
2016
, “
Performance Enhancement of Concentrated Photovoltaic Systems Using a Microchannel Heat Sink With Nanofluids
,”
Energy Convers. Manage.
,
119
, pp.
289
303
.
5.
Hasan
,
H. A.
,
Sopian
,
K.
,
Jaaz
,
A. H.
, and
Al-Shamani
,
A. N.
,
2017
, “
Experimental Investigation of Jet Array Nanofluids Impingement in Photovoltaic/Thermal Collector
,”
Sol. Energy
,
144
, pp.
321
334
.
6.
Sardarabadi
,
M.
,
Passandideh-Fard
,
M.
,
Maghrebi
,
M.-J.
, and
Ghazikhani
,
M.
,
2017
, “
Experimental Study of Using Both ZnO/Water Nanofluid and Phase Change Material (PCM) in Photovoltaic Thermal Systems
,”
Sol. Energy Mater. Sol. Cells
,
161
, pp.
62
69
.
7.
Jafari
,
A.
,
Tynjala
,
T.
,
Mousavi
,
S. M.
, and
Sarkomaa
,
P.
,
2007
, “Heat Transfer in the Kerosene-Based Ferrofluid Using Computer Simulations,” Proceedings of the World Congress on Engineering and Computer Science 2007, International Association of Engineers, Hong Kong.
8.
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Heat Transfer Augmentation Using a Magnetic Fluid Under the Influence of a Line Dipole
,”
J. Magn. Magn. Mater.
,
271
(
1
), pp.
63
73
.
9.
Xuan
,
Y.
,
Li
,
Q.
, and
Ye
,
M.
,
2007
, “
Investigations of Convective Heat Transfer in Ferrofluid Microflows Using lattice-Boltzmann Approach
,”
Int. J. Therm. Sci.
,
46
(
2
), pp.
105
111
.
10.
Lajvardi
,
M.
,
Moghimi-Rad
,
J.
,
Hadi
,
I.
,
Gavili
,
A.
,
Dallali Isfahani
,
T.
,
Zabihi
,
F.
, and
Sabbaghzadeh
,
J.
,
2010
, “
Experimental Investigation for Enhanced Ferrofluid Heat Transfer Under Magnetic Field Effect
,”
J. Magn. Magn. Mater.
,
322
(
21
), pp.
3508
3513
.
11.
Motozawa
,
M.
,
Chang
,
J.
,
Sawada
,
T.
, and
Kawaguchi
,
Y.
,
2010
, “
Effect of Magnetic Field on Heat Transfer in Rectangular Duct Flow of a Magnetic Fluid
,”
Phys. Proc.
,
9
, pp.
190
193
.
12.
Cherief
,
W.
,
Avenas
,
Y.
,
Ferrouillat
,
S.
,
Kedous-Lebouc
,
A.
,
Jossic
,
L.
, and
Petit
,
M.
,
2017
, “
Parameters Affecting Forced Convection Enhancement in Ferrofluid Cooling Systems
,”
Appl. Therm. Eng.
,
123
, pp.
156
166
.
13.
Asfer
,
M.
,
Mehta
,
B.
,
Kumar
,
A.
,
Khandekar
,
S.
, and
Panigrahi
,
P. K.
,
2016
, “
Effect of Magnetic Field on Laminar Convective Heat Transfer Characteristics of Ferrofluid Flowing Through a Circular Stainless Steel Tube
,”
Int. J. Heat Fluid Flow
,
59
, pp.
74
86
.
14.
Azizian
,
R.
,
Doroodchi
,
E.
,
McKrell
,
T.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Moghtaderi
,
B.
,
2014
, “
Effect of Magnetic Field on Laminar Convective Heat Transfer of Magnetite Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
94
109
.
15.
Sha
,
L.
,
Ju
,
Y.
, and
Zhang
,
H.
,
2017
, “
The Influence of the Magnetic Field on the Convective Heat Transfer Characteristics of Fe3O4/Water Nanofluids
,”
Appl. Therm. Eng.
,
126
, pp.
108
116
.
16.
Yarahmadi
,
M.
,
Moazami Goudarzi
,
H.
, and
Shafii
,
M. B.
,
2015
, “
Experimental Investigation Into Laminar Forced Convective Heat Transfer of Ferrofluids Under Constant and Oscillating Magnetic Field With Different Magnetic Field Arrangements and Oscillation Modes
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
601
611
.
17.
Goharkhah
,
M.
,
Salarian
,
A.
,
Ashjaee
,
M.
, and
Shahabadi
,
M.
,
2015
, “
Convective Heat Transfer Characteristics of Magnetite Nanofluid Under the Influence of Constant and Alternating Magnetic Field
,”
Powder Technol.
,
274
, pp.
258
267
.
18.
Ghofrani
,
A.
,
Dibaei
,
M. H.
,
Hakim Sima
,
A.
, and
Shafii
,
M. B.
,
2013
, “
Experimental Investigation on Laminar Forced Convection Heat Transfer of Ferrofluids Under an Alternating Magnetic Field
,”
Exp. Therm. Fluid Sci.
,
49
, pp.
193
200
.
19.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
,
2007
, “
Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures
,”
Appl. Phys. Lett.
,
91
(
20
), p.
203108
.
20.
Mendelev
,
V. S.
, and
Ivanov
,
A. O.
,
2004
, “
Ferrofluid Aggregation in Chains Under the Influence of a Magnetic Field
,”
Phys. Rev. E. Stat., Nonlinear, Soft Matter Phys.
,
70
(
5
), p.
051502
.
21.
Anwar
,
M.
,
Asfer
,
M.
,
Akhter
,
S.
,
Mohapatra
,
S.
,
Warsi
,
M. H.
,
Jain
,
N.
,
Mallick
,
N.
,
Jain
,
G. K.
,
Ali
,
A.
,
Panigrahi
,
P. K.
, and
Ahmad
,
F. J.
,
2013
, “
Aqueous Phase Transfer of Oleic Acid Coated Iron Oxide Nanoparticles: Influence of Solvents and Surfactants on Stability and Pharmaceutical Applications of Ferrofluid
,”
Magnetohydrodynamics
,
49
(3/4), pp.
339
343
.http://mhd.sal.lv/contents/2013/3/MG.49.3.16.R.html
22.
Anwar
,
M.
,
Asfer
,
M.
,
Prajapati
,
A. P.
,
Mohapatra
,
S.
,
Akhter
,
S.
,
Ali
,
A.
, and
Ahmad
,
F. J.
,
2014
, “
Synthesis and In Vitro Localization Study of Curcumin-Loaded SPIONs in a Micro Capillary for Simulating a Targeted Drug Delivery System
,”
Int. J. Pharm.
,
468
(
1–2
), pp.
158
164
.
23.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Advances in Heat Transfer, Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
You do not currently have access to this content.